Physics-Coupled Neural Network Magnetic Resonance Electrical Property Tomography (MREPT) for Conductivity Reconstruction

稳健性(进化) 人工神经网络 计算机科学 人工智能 噪音(视频) 反问题 一般化 医学影像学 磁场 算法 应用数学 物理 数学 数学分析 图像(数学) 基因 量子力学 生物化学 化学
作者
Adan Jafet Garcia Inda,Shao Ying Huang,Nevrez İmamoğlu,Wenwei Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 3463-3478 被引量:4
标识
DOI:10.1109/tip.2022.3172220
摘要

The electrical property (EP) of human tissues is a quantitative biomarker that facilitates early diagnosis of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is an imaging modality that reconstructs EPs by the radio-frequency field in an MRI system. MREPT reconstructs EPs by solving analytic models numerically based on Maxwell's equations. Most MREPT methods suffer from artifacts caused by inaccuracy of the hypotheses behind the models, and/or numerical errors. These artifacts can be mitigated by adding coefficients to stabilize the models, however, the selection of such coefficient has been empirical, which limit its medical application. Alternatively, end-to-end Neural networks-based MREPT (NN-MREPT) learns to reconstruct the EPs from training samples, circumventing Maxwell's equations. However, due to its pattern-matching nature, it is difficult for NN-MREPT to produce accurate reconstructions for new samples. In this work, we proposed a physics-coupled NN for MREPT (PCNN-MREPT), in which an analytic model, cr-MREPT, works with diffusion and convection coefficients, learned by NNs from the difference between the reconstructed and ground-truth EPs to reduce artifacts. With two simulated datasets, three generalization experiments in which test samples deviate gradually from the training samples, and one noise-robustness experiment were conducted. The results show that the proposed PCNN-MREPT achieves higher accuracy than two representative analytic methods. Moreover, compared with an end-to-end NN-MREPT, the proposed method attained higher accuracy in two critical generalization tests. This is an important step to practical MREPT medical diagnoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho关闭了zho文献求助
1秒前
小蘑菇应助ChencanFang采纳,获得20
2秒前
TAN完成签到,获得积分10
2秒前
2秒前
3秒前
昏睡的蟠桃应助觅云采纳,获得30
3秒前
手可摘星辰完成签到,获得积分10
6秒前
8秒前
9秒前
福娃完成签到,获得积分10
9秒前
YH完成签到,获得积分10
9秒前
学术通zzz发布了新的文献求助10
10秒前
ppxx发布了新的文献求助20
10秒前
ChencanFang发布了新的文献求助20
14秒前
14秒前
CipherSage应助yy采纳,获得10
15秒前
Owen应助菜籽采纳,获得10
18秒前
18秒前
18秒前
宇宙最萌小猫咪完成签到 ,获得积分10
20秒前
康康发布了新的文献求助10
20秒前
TTTaT完成签到,获得积分10
21秒前
zho发布了新的文献求助20
22秒前
22秒前
琳同学发布了新的文献求助10
23秒前
27小天使发布了新的文献求助30
23秒前
Singularity应助刻苦雪晴采纳,获得10
27秒前
动听的谷秋完成签到 ,获得积分10
27秒前
yy发布了新的文献求助10
27秒前
JamesPei应助踏雪飞鸿采纳,获得10
29秒前
29秒前
29秒前
Smole完成签到,获得积分10
30秒前
高震博完成签到 ,获得积分10
31秒前
haha完成签到,获得积分10
32秒前
布曲完成签到 ,获得积分10
36秒前
琳同学完成签到,获得积分10
37秒前
充电宝应助知足的憨人*-*采纳,获得10
38秒前
zzz完成签到,获得积分10
38秒前
SciGPT应助科研通管家采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315