Integration of clinicopathologic identification and deep transferrable image feature representation improves predictions of lymph node metastasis in prostate cancer

列线图 接收机工作特性 医学 放射科 解剖(医学) 前列腺癌 淋巴结 癌症 肿瘤科 内科学
作者
Ying Hou,Jie Bao,Yang Song,Meiling Bao,Ke-Wen Jiang,Jing Zhang,Guang Yang,Chunhong Hu,Hai‐Bin Shi,Ximing Wang,Yu‐Dong Zhang
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:68: 103395-103395 被引量:30
标识
DOI:10.1016/j.ebiom.2021.103395
摘要

Accurate identification of pelvic lymph node metastasis (PLNM) in patients with prostate cancer (PCa) is crucial for determining appropriate treatment options. Here, we built a PLNM-Risk calculator to obtain a precisely informed decision about whether to perform extended pelvic lymph node dissection (ePLND).The PLNM-Risk calculator was developed in 280 patients and verified internally in 71 patients and externally in 50 patients by integrating a set of radiologists' interpretations, clinicopathological factors and newly refined imaging indicators from MR images with radiomics machine learning and deep transfer learning algorithms. Its clinical applicability was compared with Briganti and Memorial Sloan Kettering Cancer Center (MSKCC) nomograms.The PLNM-Risk achieved good diagnostic discrimination with areas under the receiver operating characteristic curve (AUCs) of 0.93 (95% CI, 0.90-0.96), 0.92 (95% CI, 0.84-0.97) and 0.76 (95% CI, 0.62-0.87) in the training/validation, internal test and external test cohorts, respectively. If the number of ePLNDs missed was controlled at < 2%, PLNM-Risk provided both a higher number of ePLNDs spared (PLNM-Risk 59.6% vs MSKCC 44.9% vs Briganti 38.9%) and a lower number of false positives (PLNM-Risk 59.3% vs MSKCC 70.1% and Briganti 72.7%). In follow-up, patients stratified by the PLNM-Risk calculator showed significantly different biochemical recurrence rates after surgery.The PLNM-Risk calculator offers a noninvasive clinical biomarker to predict PLNM for patients with PCa. It shows improved accuracy of diagnosis support and reduced overtreatment burdens for patients with findings suggestive of PCa.This work was supported by the Key Research and Development Program of Jiangsu Province (BE2017756) and the Suzhou Science and Technology Bureau-Science and Technology Demonstration Project (SS201808).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzzz完成签到,获得积分10
1秒前
2秒前
4秒前
4秒前
ding应助ran采纳,获得10
4秒前
科研通AI5应助刘小乐采纳,获得10
4秒前
5秒前
棠真发布了新的文献求助10
6秒前
linxi完成签到,获得积分10
7秒前
9秒前
juanlin2011完成签到,获得积分10
9秒前
阿六完成签到,获得积分10
9秒前
yueming完成签到,获得积分20
10秒前
bobo完成签到 ,获得积分10
10秒前
善学以致用应助落寞凌波采纳,获得10
11秒前
11秒前
醉熏的天薇完成签到,获得积分10
11秒前
baolong发布了新的文献求助10
11秒前
JIANYOUFU发布了新的文献求助10
14秒前
懒回顾发布了新的文献求助10
15秒前
15秒前
所所应助不爱吃鱼的猫采纳,获得10
16秒前
黄任行发布了新的文献求助10
16秒前
科研通AI5应助yueming采纳,获得10
16秒前
17秒前
超帅的灭龙完成签到,获得积分10
18秒前
21秒前
山柏先生完成签到,获得积分10
21秒前
黄任行完成签到,获得积分10
21秒前
21秒前
23秒前
ran发布了新的文献求助10
24秒前
25秒前
幼稚发布了新的文献求助10
26秒前
26秒前
必发SCI完成签到,获得积分10
26秒前
27秒前
落寞凌波发布了新的文献求助10
27秒前
高贵的子默应助清明采纳,获得10
28秒前
李健应助THOME采纳,获得10
28秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
Apiaceae Himalayenses. 2 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088316
求助须知:如何正确求助?哪些是违规求助? 3627091
关于积分的说明 11500857
捐赠科研通 3339826
什么是DOI,文献DOI怎么找? 1836127
邀请新用户注册赠送积分活动 904253
科研通“疑难数据库(出版商)”最低求助积分说明 822156