PI3K/AKT/mTOR通路
自磷酸化
胰岛素受体
胰岛素
IRS1
砷
化学
信号转导
内分泌学
内科学
生物
生物化学
磷酸化
胰岛素抵抗
医学
蛋白激酶A
有机化学
作者
Churaibhon Wisessaowapak,Piyajit Watcharasit,Jutamaad Satayavivad
标识
DOI:10.1016/j.toxlet.2021.06.002
摘要
Previously, we reported that prolonged arsenic exposure impaired neuronal insulin signaling. Here we have further identified novel molecular mechanisms underlying neuronal insulin signaling impairment by arsenic. Arsenic treatment altered insulin dose-response curve and reduced maximum insulin response in differentiated human neuroblastoma SH-SY5Y cells, suggesting that arsenic hindered neuronal insulin signaling in a non-competitive like manner. Mechanistically, arsenic suppressed insulin receptor (IR) kinase activity, as witnessed by a decreased insulin-activated autophosphorylation of IR at Y1150/1151. Arsenic decreased the level of insulin receptor substrate 1 (IRS1) but increased the protein ratio between PI3K regulatory subunit, p85, and PI3K catalytic subunit, p110. Interestingly, co-immunoprecipitation demonstrated that arsenic did not alter a level of PI3K-p110/PI3K-p85 complex while increased PI3K-p85 levels in a PI3K-p110 depletion supernatant resulted from PI3K-p110 immunoprecipitation. These results indicated that arsenic increased PI3K-p85 which was free from PI3K-p110 binding. In addition, arsenic significantly increased interaction between IRS1 and PI3K-p85 but not PI3K-p110, suggesting that there may be a fraction of free PI3K-p85 interacting with IRS1. In vitro PI3K activity demonstrated that arsenic lowered PI3K activity in both basal and insulin-stimulated conditions. These results suggested that the increase in free PI3K-p85 by arsenic might compete with PI3K heterodimer for the same IRS1 binding site, in turn blocking the activation of its catalytic subunit, PI3K-p110. Taken together, our results provide additional insights into mechanisms underlying the impairment of neuronal insulin signaling by arsenic through the reduction of IR autophosphorylation, the increase in free PI3K-p85, and the impeding of PI3K activity.
科研通智能强力驱动
Strongly Powered by AbleSci AI