Radiomics-based differentiation between glioblastoma and primary central nervous system lymphoma: a comparison of diagnostic performance across different MRI sequences and machine learning techniques

人工智能 特征选择 神经组阅片室 机器学习 医学 无线电技术 胶质母细胞瘤 特征(语言学) 选型 预测建模 计算机科学 模式识别(心理学) 神经学 癌症研究 哲学 精神科 语言学
作者
Girish Bathla,Sarv Priya,Yanan Liu,Caitlin Ward,Nam H. Le,Neetu Soni,Ravishankar Pillenahalli Maheshwarappa,Varun Monga,Honghai Zhang,Milan Sonka
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (11): 8703-8713 被引量:47
标识
DOI:10.1007/s00330-021-07845-6
摘要

Despite the robust diagnostic performance of MRI-based radiomic features for differentiating between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) reported on prior studies, the best sequence or a combination of sequences and model performance across various machine learning pipelines remain undefined. Herein, we compare the diagnostic performance of multiple radiomics-based models to differentiate GBM from PCNSL. Our retrospective study included 94 patients (34 with PCNSL and 60 with GBM). Model performance was assessed using various MRI sequences across 45 possible model and feature selection combinations for nine different sequence permutations. Predictive performance was assessed using fivefold repeated cross-validation with five repeats. The best and worst performing models were compared to assess differences in performance. The predictive performance, both using individual and a combination of sequences, was fairly robust across multiple top performing models (AUC: 0.961–0.977) but did show considerable variation between the best and worst performing models. The top performing individual sequences had comparable performance to multiparametric models. The best prediction model in our study used a combination of ADC, FLAIR, and T1-CE achieving the highest AUC of 0.977, while the second ranked model used T1-CE and ADC, achieving a cross-validated AUC of 0.975. Radiomics-based predictive accuracy can vary considerably, based on the model and feature selection methods as well as the combination of sequences used. Also, models derived from limited sequences show performance comparable to those derived from all five sequences. • Radiomics-based diagnostic performance of various machine learning models for differentiating glioblastoma and PCNSL varies considerably. • ML models using limited or multiple MRI sequences can provide comparable performance, based on the chosen model. • Embedded feature selection models perform better than models using a priori feature reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祝新宇发布了新的文献求助10
1秒前
乐一李完成签到,获得积分10
1秒前
2秒前
飞飞完成签到,获得积分10
2秒前
小南完成签到 ,获得积分10
2秒前
早岁完成签到,获得积分10
3秒前
选民很头疼完成签到,获得积分10
4秒前
几木发布了新的文献求助10
4秒前
5秒前
852应助选民很头疼采纳,获得10
7秒前
无聊的熠彤完成签到,获得积分10
7秒前
八对发布了新的文献求助10
8秒前
论文都见刊应助Stalin采纳,获得10
8秒前
房LY完成签到,获得积分10
8秒前
田俊发布了新的文献求助10
9秒前
10秒前
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
FashionBoy应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
15秒前
ding应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
qiulong发布了新的文献求助10
15秒前
AamirAli完成签到,获得积分10
16秒前
Akim应助田俊采纳,获得10
18秒前
21秒前
22秒前
万能图书馆应助谦让寄容采纳,获得10
23秒前
27秒前
JIANG发布了新的文献求助30
28秒前
飘逸凌柏发布了新的文献求助10
30秒前
nie完成签到,获得积分10
30秒前
30秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451