Energy gap estimation of zinc sulfide metal chalcogenide nanostructure semiconductor using genetically hybridized support vector regression

硫系化合物 材料科学 带隙 硫化锌 半导体 光电子学 冶金
作者
Nahier Aldhafferi
出处
期刊:AIP Advances [American Institute of Physics]
卷期号:11 (11): 115222-115222
标识
DOI:10.1063/5.0069749
摘要

Zinc sulfide is a metal chalcogenide semiconductor with promising potentials in environmental sensors, short wavelength light emitting diodes, biomedical imaging, display light sources, transistors, flat panel displays, optoelectronics, and photocatalysis. Adjusting the energy gap (EG) of zinc sulfide for light response enhancement that is suitable for desired applications involves foreign material incorporation through chemical doping or co-doping mechanisms with structural distortion and host symmetry breaking. This work optimizes support vector regression (SVR) parameters with a genetic algorithm to develop a hybrid genetically optimized SVR (HGSVR-EG) model with the precise capacity to estimate the EG of a doped zinc sulfide semiconductor using the crystal lattice constant and the crystallite size as descriptors. The precision of the developed HGSVR-EG model is compared with that of the stepwise regression based model for EG estimation (STR-EG) using different error metrics. The developed HGSVR-EG model outperforms the STR-EG model with a performance improvement of 64.47%, 74.52%, and 49.52% on the basis of correlation coefficient, mean squared error, and root mean square error, respectively. The developed HGSVR-EG model explores and investigates the zinc sulfide bandgap reduction effect of manganese and chromium nano-particle incorporation in the host semiconductor, and the obtained EGs agree well with the measured values. The developed HGSVR-EG model was further validated with an external set of data, and an excellent agreement between the measured and estimated EGs was obtained. The outstanding performance of the developed predictive models in this work would ultimately facilitate EG characterization of zinc sulfide without experimental stress.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
4秒前
4秒前
华仔应助科研通管家采纳,获得10
5秒前
MchemG应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
烟花应助快乐的保温杯采纳,获得10
5秒前
司空豁应助会会采纳,获得10
7秒前
8秒前
负责笑南发布了新的文献求助10
9秒前
10秒前
zhshp完成签到,获得积分10
10秒前
11秒前
陈晶发布了新的文献求助10
11秒前
阅遍SCI完成签到,获得积分10
13秒前
冰千蕙完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
拼搏从凝关注了科研通微信公众号
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
Lucas应助丸子采纳,获得10
17秒前
mjm给小磊的求助进行了留言
18秒前
星辰大海应助乐妙采纳,获得10
20秒前
小马甲应助小赵采纳,获得10
21秒前
yangz发布了新的文献求助10
21秒前
顺顺尼完成签到 ,获得积分10
22秒前
sasa完成签到 ,获得积分10
24秒前
美丽的雨珍完成签到,获得积分10
24秒前
29秒前
30秒前
再炫一袋砂糖橘完成签到 ,获得积分10
31秒前
handsomelin发布了新的文献求助10
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 880
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202170
求助须知:如何正确求助?哪些是违规求助? 3736953
关于积分的说明 11766910
捐赠科研通 3409343
什么是DOI,文献DOI怎么找? 1870570
邀请新用户注册赠送积分活动 926133
科研通“疑难数据库(出版商)”最低求助积分说明 836402