清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bayesian convolutional neural networks for predicting the terrestrial water storage anomalies during GRACE and GRACE-FO gap

桥接(联网) 卷积神经网络 计算机科学 贝叶斯概率 贝叶斯网络 环境科学 蓄水 比例(比率) 人工智能 海洋学 地质学 地图学 计算机网络 入口 地理
作者
Shaoxing Mo,Yulong Zhong,Ehsan Forootan,Nooshin Mehrnegar,Xin Yin,Jichun Wu,Wei Feng,Xiaoqing Shi
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:604: 127244-127244 被引量:89
标识
DOI:10.1016/j.jhydrol.2021.127244
摘要

The Gravity Recovery and Climate Experiment (GRACE) satellite and its successor GRACE Follow-On (GRACE-FO) provide valuable and accurate observations of terrestrial water storage anomalies (TWSAs) at a global scale. However, there is an approximately one-year observation gap of TWSAs between GRACE and GRACE-FO. This poses a challenge for practical applications, as discontinuity in the TWSA observations may introduce significant biases and uncertainties in the hydrological model predictions and consequently mislead decision making. To tackle this challenge, a Bayesian convolutional neural network (BCNN) driven by climatic data is proposed in this study to bridge this gap at a global scale. Enhanced by integrating recent advances in deep learning, including the attention mechanisms and the residual and dense connections, BCNN can automatically and efficiently extract important features for TWSA predictions from multi-source input data. The predicted TWSAs are compared to the hydrological model outputs and three recent TWSA prediction products. The comparison suggests the superior performance of BCNN in providing improved predictions of TWSAs during the gap in particular in the relatively arid regions. The BCNN's ability to identify the extreme dry and wet events during the gap period is further discussed and comprehensively demonstrated by comparing with the precipitation anomalies, drought index, ground/surface water levels. Results indicate that BCNN is capable of offering a reliable solution to maintain the TWSA data continuity and quantify the impacts of climate extremes during the gap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗碗豆喵完成签到 ,获得积分10
11秒前
16秒前
2041完成签到,获得积分10
20秒前
hhuajw应助无情的琳采纳,获得20
22秒前
迷茫的一代完成签到,获得积分10
27秒前
47秒前
lucky完成签到 ,获得积分10
54秒前
56秒前
jason完成签到 ,获得积分10
1分钟前
wk完成签到 ,获得积分10
1分钟前
重庆森林完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Jasper应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
咚咚发布了新的文献求助10
2分钟前
2分钟前
斯文败类应助读书的时候采纳,获得10
2分钟前
咚咚完成签到,获得积分10
3分钟前
xue完成签到 ,获得积分10
3分钟前
3分钟前
CodeCraft应助读书的时候采纳,获得10
3分钟前
自然亦凝完成签到,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
4分钟前
CipherSage应助读书的时候采纳,获得10
4分钟前
Criminology34应助口香糖探长采纳,获得30
4分钟前
汉堡包应助读书的时候采纳,获得10
4分钟前
李健的小迷弟应助linghanlan采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739903
求助须知:如何正确求助?哪些是违规求助? 5391231
关于积分的说明 15340093
捐赠科研通 4882224
什么是DOI,文献DOI怎么找? 2624274
邀请新用户注册赠送积分活动 1572976
关于科研通互助平台的介绍 1529844