强化学习
耗散系统
控制理论(社会学)
计算机科学
微电网
控制器(灌溉)
理论(学习稳定性)
控制工程
控制系统
网络控制系统
控制(管理)
工程类
人工智能
生物
量子力学
电气工程
机器学习
物理
农学
作者
Krishna Chaitanya Kosaraju,S. Sivaranjani,Wesley A. Suttle,Vijay Gupta,J. Liu
标识
DOI:10.1109/tcns.2021.3124896
摘要
We consider the problem of designing distributed controllers to stabilize a class of networked systems, where each subsystem is dissipative and designs a reinforcement learning based local controller to maximize an individual cumulative reward function. We develop an approach that enforces dissipativity conditions on these local controllers at each subsystem to guarantee stability of the entire networked system. The proposed approach is illustrated on a dc microgrid example, where the objective is to maintain voltage stability of the network using locally distributed controllers at each generation unit.
科研通智能强力驱动
Strongly Powered by AbleSci AI