Automated delineation of head and neck organs at risk using synthetic MRI‐aided mask scoring regional convolutional neural network

豪斯多夫距离 卷积神经网络 人工智能 计算机科学 分割 头颈部 百分位 模式识别(心理学) Sørensen–骰子系数 深度学习 磁共振成像 核医学 图像分割 数学 放射科 医学 统计 外科
作者
Xianjin Dai,Yang Lei,Tonghe Wang,Jun Zhou,Justin Roper,Mark W. McDonald,Jonathan J. Beitler,Walter J. Curran,Tian Liu,Xiaofeng Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 5862-5873 被引量:30
标识
DOI:10.1002/mp.15146
摘要

Abstract Purpose Auto‐segmentation algorithms offer a potential solution to eliminate the labor‐intensive, time‐consuming, and observer‐dependent manual delineation of organs‐at‐risk (OARs) in radiotherapy treatment planning. This study aimed to develop a deep learning‐based automated OAR delineation method to tackle the current challenges remaining in achieving reliable expert performance with the state‐of‐the‐art auto‐delineation algorithms. Methods The accuracy of OAR delineation is expected to be improved by utilizing the complementary contrasts provided by computed tomography (CT) (bony‐structure contrast) and magnetic resonance imaging (MRI) (soft‐tissue contrast). Given CT images, synthetic MR images were firstly generated by a pre‐trained cycle‐consistent generative adversarial network. The features of CT and synthetic MRI were then extracted and combined for the final delineation of organs using mask scoring regional convolutional neural network. Both in‐house and public datasets containing CT scans from head‐and‐neck (HN) cancer patients were adopted to quantitatively evaluate the performance of the proposed method against current state‐of‐the‐art algorithms in metrics including Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), and residual mean square distance (RMS). Results Across all of 18 OARs in our in‐house dataset, the proposed method achieved an average DSC, HD95, MSD, and RMS of 0.77 (0.58–0.90), 2.90 mm (1.32–7.63 mm), 0.89 mm (0.42–1.85 mm), and 1.44 mm (0.71–3.15 mm), respectively, outperforming the current state‐of‐the‐art algorithms by 6%, 16%, 25%, and 36%, respectively. On public datasets, for all nine OARs, an average DSC of 0.86 (0.73–0.97) were achieved, 6% better than the competing methods. Conclusion We demonstrated the feasibility of a synthetic MRI‐aided deep learning framework for automated delineation of OARs in HN radiotherapy treatment planning. The proposed method could be adopted into routine HN cancer radiotherapy treatment planning to rapidly contour OARs with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
或无情完成签到 ,获得积分10
刚刚
木木杨完成签到,获得积分10
3秒前
4秒前
stt完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
泡泡茶壶o完成签到 ,获得积分10
14秒前
快乐芷荷完成签到 ,获得积分10
16秒前
22秒前
27秒前
anan完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助30
30秒前
lucky完成签到 ,获得积分10
31秒前
小凯同学发布了新的文献求助10
31秒前
WSY完成签到 ,获得积分10
35秒前
优秀剑愁完成签到 ,获得积分10
40秒前
量子星尘发布了新的文献求助10
43秒前
赘婿应助zhh采纳,获得10
45秒前
雪流星完成签到 ,获得积分10
53秒前
小凯同学完成签到,获得积分10
53秒前
lqm完成签到,获得积分10
53秒前
量子星尘发布了新的文献求助10
57秒前
58秒前
超体完成签到 ,获得积分10
1分钟前
1分钟前
萌仔完成签到 ,获得积分10
1分钟前
zhh完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紫陌完成签到,获得积分10
1分钟前
timeless完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
少年完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
1分钟前
leaolf应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Athena操作手册 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044193
求助须知:如何正确求助?哪些是违规求助? 4273987
关于积分的说明 13323075
捐赠科研通 4087467
什么是DOI,文献DOI怎么找? 2236315
邀请新用户注册赠送积分活动 1243728
关于科研通互助平台的介绍 1171628