Multi-Agent Reinforcement Learning for Automated Peer-to-Peer Energy Trading in Double-Side Auction Market

投标 强化学习 计算机科学 电力市场 双重拍卖 市场清算 点对点 利润(经济学) 市场机制 计算经济学 息税前利润 多智能体系统 运筹学 微观经济学 人工智能 分布式计算 共同价值拍卖 经济 工程类 宏观经济学 电气工程
作者
Dawei Qiu,Jianhong Wang,Junkai Wang,Goran Štrbac
标识
DOI:10.24963/ijcai.2021/401
摘要

With increasing prosumers employed with distributed energy resources (DER), advanced energy management has become increasingly important. To this end, integrating demand-side DER into electricity market is a trend for future smart grids. The double-side auction (DA) market is viewed as a promising peer-to-peer (P2P) energy trading mechanism that enables interactions among prosumers in a distributed manner. To achieve the maximum profit in a dynamic electricity market, prosumers act as price makers to simultaneously optimize their operations and trading strategies. However, the traditional DA market is difficult to be explicitly modelled due to its complex clearing algorithm and the stochastic bidding behaviors of the participants. For this reason, in this paper we model this task as a multi-agent reinforcement learning (MARL) problem and propose an algorithm called DA-MADDPG that is modified based on MADDPG by abstracting the other agents’ observations and actions through the DA market public information for each agent’s critic. The experiments show that 1) prosumers obtain more economic benefits in P2P energy trading w.r.t. the conventional electricity market independently trading with the utility company; and 2) DA-MADDPG performs better than the traditional Zero Intelligence (ZI) strategy and the other MARL algorithms, e.g., IQL, IDDPG, IPPO and MADDPG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
领导范儿应助贪玩的忆山采纳,获得10
1秒前
2秒前
邵硕发布了新的文献求助10
6秒前
fyw完成签到,获得积分10
6秒前
Dandy完成签到,获得积分10
6秒前
11秒前
桃子发布了新的文献求助10
17秒前
科研通AI5应助认真的白昼采纳,获得10
17秒前
19秒前
内向的幼珊完成签到,获得积分10
19秒前
21秒前
小龅牙吖发布了新的文献求助10
22秒前
良月完成签到,获得积分20
24秒前
26秒前
ZK完成签到,获得积分10
26秒前
节能减排发布了新的文献求助10
26秒前
xiaobai发布了新的文献求助10
27秒前
白白完成签到 ,获得积分10
29秒前
NexusExplorer应助侦察兵采纳,获得10
29秒前
lxgz完成签到 ,获得积分10
30秒前
阿庭发布了新的文献求助10
32秒前
ZhouYW应助科研通管家采纳,获得10
33秒前
cdercder应助科研通管家采纳,获得30
33秒前
Hello应助科研通管家采纳,获得10
33秒前
田様应助科研通管家采纳,获得10
33秒前
无花果应助科研通管家采纳,获得10
33秒前
orixero应助科研通管家采纳,获得30
33秒前
Ava应助科研通管家采纳,获得10
33秒前
残幻应助科研通管家采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
33秒前
Lucas应助科研通管家采纳,获得10
33秒前
ZhouYW应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
34秒前
34秒前
35秒前
DAVE应助代代代采纳,获得20
35秒前
高分求助中
Practitioner Research at Doctoral Level 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342992
关于积分的说明 10314523
捐赠科研通 3059700
什么是DOI,文献DOI怎么找? 1679083
邀请新用户注册赠送积分活动 806322
科研通“疑难数据库(出版商)”最低求助积分说明 763102