亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Evolutionary Multi-objective Approach for Coordinating Supplier–Producer Conflict in Lot Sizing

妥协 尺寸 计算机科学 分类 背景(考古学) 等级制度 运筹学 集合(抽象数据类型) 任务(项目管理) 遗传算法 供应链 启发式 数学优化 业务 经济 营销 数学 人工智能 算法 艺术 古生物学 社会科学 管理 机器学习 社会学 市场经济 视觉艺术 生物 程序设计语言
作者
Maha Elarbi,Chaima Elwadi,Slim Bechikh,Zied Bahroun,Lamjed Ben Saïd
出处
期刊:International Journal of Information Technology and Decision Making [World Scientific]
卷期号:21 (02): 541-575 被引量:3
标识
DOI:10.1142/s0219622021500681
摘要

Context. This paper deals with bilateral joint decision making in supply chains, and more specifically focuses on coordinating the decisions taken by the supplier and the producer in lot sizing. Research gap. Previous existing works in lot sizing have modeled the coordination task as a bi-level optimization problem. Unfortunately, the bi-level model causes a hierarchy between the two actors by making the leader imposing the decisions that suits his/her interests to the follower. This induces a significant conflict of interest between the two stakeholders because the leaders benefit is always greater than the follower’s one. Objective. The main goal of this work is to attenuate the conflict of interest issue between both actors by proposing a multi-objective model that alleviates the hierarchy and creates a win–win situation. Method. We propose an effective multi-objective lot sizing model, called Supplier-Producer Multi-Objective Lot Sizing (SP-MOLS); that alleviates the hierarchy between the actors’ objectives by assigning them the same importance degree and hence optimizing them simultaneously. The resolution of our SP-MOLS model using the Non-dominated Sorting Genetic Algorithm II (NSGA-II), as an effective meta-heuristic search engine, provides a set of trade-off solutions, each expressing a compromise degree between the two actors: the supplier and the producer. Results. To validate our approach, we use five test problems each containing 100 instances with a planning horizon of 10 periods and we analyze the obtained trade-off solutions using the compromise degree and the gap between costs as main consensus metrics. The obtained results reveal that a small sacrifice in the leader’s benefit could produce a significant improvement in the follower’s one. For instance, a 10% increase of the producer’s cost may generate a 42% decrease in the supplier’s one. Reciprocally, a 0.4% increase of the supplier’s cost may generate a 49% decrease in the producer’s cost. Method algorithmic improvement. As solutions of interests for both stakeholders are usually located within the extreme regions of the Pareto front, we propose NSGA-II with Focus on Extreme Regions (NSGA-II-FER) as a new variant of NSGA-II that focuses the search in the extreme regions of the Pareto front thanks to a modified crowding measure that is adaptively managed during the evolution process. This variant has shown its ability to eliminate dominance-resistant solutions and thus to come up with better extreme regions. Based on the experimental results, NSGA-II-FER is shown to have the ability to provide the decision makers with more convergent and more diversified extreme non-dominated solutions, expressing better trade-off degrees between both actors’ costs. Managerial implications. The promising results obtained by our proposal encourage decision makers’ to adopt a multi-objective approach rather than a bi-level one. From our personal perspective, we recommend running the three models (the multi-objective model and the two bi-levels ones); then analyzing the solutions of all models in terms of compromise degrees and logistic costs. This would allow both actors to observe how the hierarchy incurred by the bi-level models increases conflicts, while the multi-objective one generates solutions with much improved consensus degrees. Such observations will convince the supply chain stakeholders to adopt our multi-objective approach, while keeping an eye on the bi-level models’ solutions and the consensus degrees. Finally, we also recommend focusing on the extreme regions of the Pareto front since they contain rich solutions in terms of consensus. Such solutions are more convincing in the negotiation process and thus could lead to better win–win situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助lydia采纳,获得10
12秒前
silsotiscolor完成签到,获得积分10
1分钟前
852应助啥也不会采纳,获得30
1分钟前
南宫古伦完成签到 ,获得积分10
1分钟前
1分钟前
啥也不会发布了新的文献求助30
1分钟前
小蘑菇应助zm采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
啥也不会完成签到,获得积分10
1分钟前
lanbing802发布了新的文献求助10
1分钟前
2分钟前
小羊同学发布了新的文献求助10
2分钟前
小羊同学完成签到,获得积分10
2分钟前
2分钟前
lydia发布了新的文献求助10
2分钟前
重要元灵完成签到 ,获得积分10
3分钟前
沉静完成签到 ,获得积分10
3分钟前
lydia完成签到,获得积分10
4分钟前
小尾巴发布了新的文献求助20
4分钟前
孟筱完成签到 ,获得积分10
4分钟前
lanbing802发布了新的文献求助10
4分钟前
Hello应助mbxjsy采纳,获得20
4分钟前
pass完成签到 ,获得积分10
4分钟前
5分钟前
mbxjsy发布了新的文献求助20
5分钟前
白昼の月完成签到 ,获得积分0
5分钟前
小尾巴完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
汉堡包应助LiH采纳,获得10
6分钟前
lanbing802完成签到,获得积分10
7分钟前
minusplus完成签到,获得积分10
7分钟前
小白发布了新的文献求助10
7分钟前
完美世界应助小白采纳,获得10
8分钟前
小白完成签到,获得积分20
8分钟前
金子完成签到,获得积分10
9分钟前
金子发布了新的文献求助10
9分钟前
gincle完成签到 ,获得积分10
9分钟前
完美世界应助科研通管家采纳,获得10
9分钟前
wanci应助科研通管家采纳,获得10
9分钟前
ezekiet完成签到 ,获得积分10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782682
求助须知:如何正确求助?哪些是违规求助? 3328076
关于积分的说明 10234318
捐赠科研通 3043042
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799684
科研通“疑难数据库(出版商)”最低求助积分说明 758994