Protein Phase Separation Arising from Intrinsic Disorder: First-Principles to Bespoke Applications

生物分子 内在无序蛋白质 纳米技术 相(物质) 化学 计算生物学 生物 生物物理学 材料科学 有机化学
作者
Daniel Mark Shapiro,Max Ney,Seyed Ali Eghtesadi,Ashutosh Chilkoti
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:125 (25): 6740-6759 被引量:31
标识
DOI:10.1021/acs.jpcb.1c01146
摘要

The phase separation of biomolecules has become the focus of intense research in the past decade, with a growing body of research implicating this phenomenon in essentially all biological functions, including but not limited to homeostasis, stress responses, gene regulation, cell differentiation, and disease. Excellent reviews have been published previously on the underlying physical basis of liquid–liquid phase separation (LLPS) of biological molecules (Nat. Phys. 2015, 11, 899–904) and LLPS as it occurs natively in physiology and disease (Science 2017, 357, eaaf4382; Biochemistry 2018, 57, 2479–2487; Chem. Rev. 2014, 114, 6844–6879). Here, we review how the theoretical physical basis of LLPS has been used to better understand the behavior of biomolecules that undergo LLPS in natural systems and how this understanding has also led to the development of novel synthetic systems that exhibit biomolecular phase separation, and technologies that exploit these phenomena. In part 1 of this Review, we explore the theory behind the phase separation of biomolecules and synthetic macromolecules and introduce a few notable phase-separating biomolecules. In part 2, we cover experimental and computational methods used to study phase-separating proteins and how these techniques have uncovered the mechanisms underlying phase separation in physiology and disease. Finally, in part 3, we cover the development and applications of engineered phase-separating polypeptides, ranging from control of their self-assembly to create defined supramolecular architectures to reprogramming biological processes using engineered IDPs that exhibit LLPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋大开发布了新的文献求助10
1秒前
3秒前
烟花应助十三采纳,获得10
4秒前
4秒前
赘婿应助孤独沛菡采纳,获得10
5秒前
7秒前
8秒前
FAN发布了新的文献求助100
8秒前
蓝桉哦发布了新的文献求助10
8秒前
华仔应助沉默的傲芙采纳,获得10
9秒前
LiXQ完成签到,获得积分10
10秒前
12秒前
自由大象完成签到,获得积分10
13秒前
晴文发布了新的文献求助30
14秒前
852应助言言采纳,获得10
14秒前
15秒前
丘比特应助听话的书雁采纳,获得10
16秒前
16秒前
领导范儿应助左岸心诚采纳,获得10
17秒前
smmu008发布了新的文献求助20
17秒前
孤独沛菡发布了新的文献求助10
17秒前
18秒前
20秒前
21秒前
JamesPei应助晴文采纳,获得10
22秒前
24秒前
zdz发布了新的文献求助10
24秒前
25秒前
CipherSage应助冷傲凝琴采纳,获得10
25秒前
谢书南发布了新的文献求助10
27秒前
27秒前
七里香发布了新的文献求助10
29秒前
31秒前
31秒前
彭于晏应助zdz采纳,获得10
31秒前
我是老大应助孤独沛菡采纳,获得10
35秒前
byumi发布了新的文献求助10
35秒前
谢书南完成签到,获得积分10
35秒前
36秒前
37秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Hieronymi Mercurialis Foroliviensis De arte gymnastica libri sex: In quibus exercitationum omnium vetustarum genera, loca, modi, facultates, & ... exercitationes pertinet diligenter explicatur Hardcover – 26 August 2016 900
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2404258
求助须知:如何正确求助?哪些是违规求助? 2102893
关于积分的说明 5307159
捐赠科研通 1830555
什么是DOI,文献DOI怎么找? 912123
版权声明 560502
科研通“疑难数据库(出版商)”最低求助积分说明 487683