Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration

痴呆 磁共振弥散成像 认知 医学 心理学 部分各向异性 内科学 心脏病学 物理医学与康复 磁共振成像 听力学 疾病 放射科 精神科
作者
Marco Egle,Saima Hilal,Anil M. Tuladhar,Lukas Pirpamer,Edith Hofer,Marco Duering,James Wason,Robin G. Morris,Martin Dichgans,Reinhold Schmidt,Daniel J. Tozer,Christopher Chen,Frank‐Erik de Leeuw,Hugh S. Markus
出处
期刊:Journal of Neurology, Neurosurgery, and Psychiatry [BMJ]
卷期号:93 (1): 14-23 被引量:21
标识
DOI:10.1136/jnnp-2021-326571
摘要

It has been suggested that diffusion tensor imaging (DTI) measures sensitive to white matter (WM) damage may predict future dementia risk not only in cerebral small vessel disease (SVD), but also in mild cognitive impairment. To determine whether DTI measures were associated with cognition cross-sectionally and predicted future dementia risk across the full range of SVD severity, we established the International OPtimising mulTImodal MRI markers for use as surrogate markers in trials of Vascular Cognitive Impairment due to cerebrAl small vesseL disease collaboration which included six cohorts.Among the six cohorts, prospective data with dementia incidences were available for three cohorts. The associations between six different DTI measures and cognition or dementia conversion were tested. The additional contribution to prediction of other MRI markers of SVD was also determined.The DTI measure mean diffusivity (MD) median correlated with cognition in all cohorts, demonstrating the contribution of WM damage to cognition. Adding MD median significantly improved the model fit compared to the clinical risk model alone and further increased in all single-centre SVD cohorts when adding conventional MRI measures. Baseline MD median predicted dementia conversion. In a study with severe SVD (SCANS) change in MD median also predicted dementia conversion. The area under the curve was best when employing a multimodal MRI model using both DTI measures and other MRI measures.Our results support a central role for WM alterations in dementia pathogenesis in all cohorts. DTI measures such as MD median may be a useful clinical risk predictor. The contribution of other MRI markers varied according to disease severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alicia完成签到 ,获得积分10
刚刚
精明凡双应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
所所应助12123浪采纳,获得10
2秒前
CodeCraft应助12123浪采纳,获得10
2秒前
research完成签到,获得积分10
2秒前
2秒前
一天八杯水完成签到,获得积分10
6秒前
高高完成签到 ,获得积分10
7秒前
zzw发布了新的文献求助20
8秒前
Glorious发布了新的文献求助10
9秒前
10秒前
带线一去不回完成签到,获得积分10
10秒前
吴未完成签到,获得积分10
15秒前
Glorious完成签到,获得积分10
17秒前
鲤角兽完成签到,获得积分10
17秒前
20秒前
等待含羞草完成签到 ,获得积分10
20秒前
上官若男应助桐月十六采纳,获得10
21秒前
23秒前
chenqiumu应助内向海豚采纳,获得10
25秒前
pepco完成签到,获得积分10
27秒前
28秒前
傲娇问晴完成签到,获得积分20
28秒前
贾诗敏发布了新的文献求助10
28秒前
kun完成签到,获得积分20
28秒前
29秒前
干净绮烟应助刘承昭采纳,获得20
30秒前
Orange应助霞霞采纳,获得10
30秒前
qiuyutingchan完成签到,获得积分10
30秒前
kun发布了新的文献求助10
31秒前
彭于晏应助无私的谷槐采纳,获得10
31秒前
31秒前
ZIYU完成签到,获得积分10
32秒前
HYC完成签到,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284222
求助须知:如何正确求助?哪些是违规求助? 4437791
关于积分的说明 13814979
捐赠科研通 4318770
什么是DOI,文献DOI怎么找? 2370598
邀请新用户注册赠送积分活动 1366003
关于科研通互助平台的介绍 1329460