亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

计算机科学 点云 推论 人工智能 可扩展性 概括性 卷积神经网络 占用率 计算机图形学 符号(数学) 深度学习 领域(数学) 计算机视觉 数学 心理治疗师 纯数学 生物 数学分析 数据库 生态学 心理学
作者
Jiapeng Tang,Jiabao Lei,Dan Xu,Feiying Ma,Kui Jia,Lei Zhang
标识
DOI:10.1109/iccv48922.2021.00644
摘要

Surface reconstruction from point clouds is a fundamental problem in the computer vision and graphics community. Recent state-of-the-arts solve this problem by individually optimizing each local implicit field during inference. Without considering the geometric relationships between local fields, they typically require accurate normals to avoid the sign conflict problem in overlapped regions of local fields, which severely limits their applicability to raw scans where surface normals could be unavailable. Although SAL breaks this limitation via sign-agnostic learning, further works still need to explore how to extend this technique for local shape modeling. To this end, we propose to learn implicit surface reconstruction by sign-agnostic optimization of convolutional occupancy networks, to simultaneously achieve advanced scalability to large-scale scenes, generality to novel shapes, and applicability to raw scans in a unified framework. Concretely, we achieve this goal by a simple yet effective design, which further optimizes the pre-trained occupancy prediction networks with an unsigned cross-entropy loss during inference. The learning of occupancy fields is conditioned on convolutional features from an hourglass network architecture. Extensive experimental comparisons with previous state-of-the-arts on both object-level and scene-level datasets demonstrate the superior accuracy of our approach for surface reconstruction from un-orientated point clouds. The code is available at https://github.com/tangjiapeng/SA-ConvONet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
ldjldj_2004完成签到 ,获得积分10
18秒前
20秒前
32秒前
35秒前
我一进来就看到常威在打来福完成签到,获得积分10
36秒前
田様应助hyhyhyhy采纳,获得10
36秒前
Li应助科研通管家采纳,获得10
43秒前
Li应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
爆米花应助天真咖啡豆采纳,获得10
45秒前
47秒前
hyhyhyhy发布了新的文献求助10
51秒前
1分钟前
Waris完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
NexusExplorer应助天真咖啡豆采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
隐形曼青应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得10
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
科研通AI5应助www采纳,获得50
1分钟前
hky完成签到 ,获得积分10
1分钟前
科研通AI5应助天真咖啡豆采纳,获得10
1分钟前
所所应助泥巴采纳,获得10
2分钟前
HCCha完成签到,获得积分10
2分钟前
2分钟前
谨慎开山发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346429
关于积分的说明 10329299
捐赠科研通 3062988
什么是DOI,文献DOI怎么找? 1681276
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763713