Multi-Response Awareness for Retrieval-Based Conversations: Respond with Diversity via Dynamic Representation Learning

计算机科学 模式(遗传算法) 人工智能 代表(政治) 特征学习 情报检索 自然语言处理 政治 政治学 法学
作者
Rui Yan,Weiheng Liao,Dongyan Zhao,Ji-Rong Wen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:39 (4): 1-29 被引量:2
标识
DOI:10.1145/3470450
摘要

Conversational systems now attract great attention due to their promising potential and commercial values. To build a conversational system with moderate intelligence is challenging and requires big (conversational) data, as well as interdisciplinary techniques. Thanks to the prosperity of the Web, the massive data available greatly facilitate data-driven methods such as deep learning for human-computer conversational systems. In general, retrieval-based conversational systems apply various matching schema between query utterances and responses, but the classic retrieval paradigm suffers from prominent weakness for conversations: the system finds similar responses given a particular query. For real human-to-human conversations, on the contrary, responses can be greatly different yet all are possibly appropriate. The observation reveals the diversity phenomenon in conversations. In this article, we ascribe the lack of conversational diversity to the reason that the query utterances are statically modeled regardless of candidate responses through traditional methods. To this end, we propose a dynamic representation learning strategy that models the query utterances and different response candidates in an interactive way. To be more specific, we propose a Respond-with-Diversity model augmented by the memory module interacting with both the query utterances and multiple candidate responses. Hence, we obtain dynamic representations for the input queries conditioned on different response candidates. We frame the model as an end-to-end learnable neural network. In the experiments, we demonstrate the effectiveness of the proposed model by achieving a good appropriateness score and much better diversity in retrieval-based conversations between humans and computers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赎罪完成签到 ,获得积分10
刚刚
lhr发布了新的文献求助10
1秒前
梅梅完成签到,获得积分10
1秒前
XYN1完成签到,获得积分20
1秒前
科研通AI5应助不似少年游.采纳,获得10
2秒前
chj发布了新的文献求助10
2秒前
2秒前
甜蜜冰珍发布了新的文献求助10
3秒前
guojingjing完成签到 ,获得积分10
4秒前
miaogm发布了新的文献求助30
4秒前
马大帅完成签到,获得积分10
4秒前
丘奇发布了新的文献求助10
4秒前
CXC发布了新的文献求助10
4秒前
4秒前
Hello应助hesongheng采纳,获得10
5秒前
田様应助热呃呃呃采纳,获得10
5秒前
bitter完成签到,获得积分10
6秒前
snowdrift完成签到,获得积分10
6秒前
ss发布了新的文献求助10
7秒前
咯咚完成签到 ,获得积分10
7秒前
可爱玫瑰完成签到,获得积分10
7秒前
liuHX完成签到,获得积分10
8秒前
小鱼完成签到,获得积分10
8秒前
8秒前
研友_VZG7GZ应助哼哒采纳,获得10
8秒前
桐桐应助blhbpjn采纳,获得10
9秒前
飞天817发布了新的文献求助10
9秒前
9秒前
he大海贼完成签到 ,获得积分10
9秒前
迷路易形发布了新的文献求助10
9秒前
SciGPT应助土豆采纳,获得10
9秒前
科研通AI5应助研友_汪老头采纳,获得10
9秒前
小石头完成签到,获得积分10
9秒前
大模型应助Korombi采纳,获得20
9秒前
lhr完成签到,获得积分10
10秒前
10秒前
dake完成签到,获得积分10
12秒前
13秒前
13秒前
蘑菇发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834344
求助须知:如何正确求助?哪些是违规求助? 3376864
关于积分的说明 10495644
捐赠科研通 3096375
什么是DOI,文献DOI怎么找? 1704930
邀请新用户注册赠送积分活动 820309
科研通“疑难数据库(出版商)”最低求助积分说明 771966