Urban tree species classification using UAV-based multi-sensor data fusion and machine learning

多光谱图像 高光谱成像 激光雷达 遥感 支持向量机 传感器融合 人工智能 计算机科学 随机森林 光谱特征 树(集合论) 科恩卡帕 模式识别(心理学) 机器学习 地理 数学 数学分析
作者
Sean Hartling,Vasit Sagan,Maitiniyazi Maimaitijiang
出处
期刊:Giscience & Remote Sensing [Taylor & Francis]
卷期号:58 (8): 1250-1275 被引量:71
标识
DOI:10.1080/15481603.2021.1974275
摘要

Urban tree species classification is a challenging task due to spectral and spatial diversity within an urban environment. Unmanned aerial vehicle (UAV) platforms and small-sensor technology are rapidly evolving, presenting the opportunity for a comprehensive multi-sensor remote sensing approach for urban tree classification. The objectives of this paper were to develop a multi-sensor data fusion technique for urban tree species classification with limited training samples. To that end, UAV-based multispectral, hyperspectral, LiDAR, and thermal infrared imagery was collected over an urban study area to test the classification of 96 individual trees from seven species using a data fusion approach. Two supervised machine learning classifiers, Random Forest (RF) and Support Vector Machine (SVM), were investigated for their capacity to incorporate highly dimensional and diverse datasets from multiple sensors. When using hyperspectral-derived spectral features with RF, the fusion of all features extracted from all sensor types (spectral, LiDAR, thermal) achieved the highest overall classification accuracy (OA) of 83.3% and kappa of 0.80. Despite multispectral reflectance bands alone producing significantly lower OA of 55.2% compared to 70.2% with minimum noise fraction (MNF) transformed hyperspectral reflectance bands, the full dataset combination (spectral, LiDAR, thermal) with multispectral-derived spectral features achieved an OA of 81.3% and kappa of 0.77 using RF. Comparison of the features extracted from individual sensors for each species highlight the ability for each sensor to identify distinguishable characteristics between species to aid classification. The results demonstrate the potential for a high-resolution multi-sensor data fusion approach for classifying individual trees by species in a complex urban environment under limited sampling requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得30
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
陈晓真应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
冰魂应助科研通管家采纳,获得10
1秒前
wy.he应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
震震应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
kanoz完成签到 ,获得积分10
3秒前
roaring发布了新的文献求助10
5秒前
娃娃菜完成签到,获得积分10
7秒前
myyy完成签到 ,获得积分10
8秒前
皮皮虾完成签到 ,获得积分10
8秒前
bjglp完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
完美世界应助roaring采纳,获得10
11秒前
庆123发布了新的文献求助10
15秒前
CipherSage应助蔡继海采纳,获得10
16秒前
21秒前
赘婿应助PTDRA采纳,获得10
22秒前
Orange应助111采纳,获得10
22秒前
23秒前
24秒前
星黛露发布了新的文献求助10
25秒前
26秒前
26秒前
江河哈哈应助菜菜Cc采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778177
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10216096
捐赠科研通 3039069
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758358