Error detection model developed using a multi‐task convolutional neural network in patient‐specific quality assurance for volumetric‐modulated arc therapy

多叶准直器 成像体模 质量保证 剂量学 计算机科学 监视器单元 探测器 等中心 准直器 偏移量(计算机科学) 核医学 人工智能 数学 直线粒子加速器 梁(结构) 光学 物理 医学 病理 程序设计语言 外部质量评估 电信
作者
Yuto Kimura,Noriyuki Kadoya,Yohei Oku,Tomohiro Kajikawa,Seiji Tomori,Keiichi Jingu
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 4769-4783 被引量:33
标识
DOI:10.1002/mp.15031
摘要

Abstract Purpose In patient‐specific quality assurance (QA) for static beam intensity‐modulated radiation therapy (IMRT), machine‐learning‐based dose analysis methods have been developed to identify the cause of an error as an alternative to gamma analysis. Although these new methods have revealed that the cause of the error can be identified by analyzing the dose distribution obtained from the two‐dimensional detector, they have not been extended to the analysis of volumetric‐modulated arc therapy (VMAT) QA. In this study, we propose a deep learning approach to detect various types of errors in patient‐specific VMAT QA. Methods A total of 161 beams from 104 prostate VMAT plans were analyzed. All beams were measured using a cylindrical detector (Delta4; ScandiDos, Uppsala, Sweden), and predicted dose distributions in a cylindrical phantom were calculated using a treatment planning system (TPS). In addition to the error‐free plan, we simulated 12 types of errors: two types of multileaf collimator positional errors (systematic or random leaf offset of 2 mm), two types of monitor unit (MU) scaling errors (±3%), two types of gantry rotation errors (±2° in clockwise and counterclockwise direction), and six types of phantom setup errors (±1 mm in lateral, longitudinal, and vertical directions). The error‐introduced predicted dose distributions were created by editing the calculated dose distributions using a TPS with in‐house software. Those 13 types of dose difference maps, consisting of an error‐free map and 12 error maps, were created from the measured and predicted dose distributions and were used to train the convolutional neural network (CNN) model. Our model was a multi‐task model that individually detected each of the 12 types of errors. Two datasets, Test sets 1 and 2, were prepared to evaluate the performance of the model. Test set 1 consisted of 13 types of dose maps used for training, whereas Test set 2 included the dose maps with 25 types of errors in addition to the error‐free dose map. The dose map, which introduced 25 types of errors, was generated by combining two of the 12 types of simulated errors. For comparison with the performance of our model, gamma analysis was performed for Test sets 1 and 2 with the criteria set to 3%/2 mm and 2%/1 mm (dose difference/distance to agreement). Results For Test set 1, the overall accuracy of our CNN model, gamma analysis with the criteria set to 3%/2 mm, and gamma analysis with the criteria set to 2%/1 mm was 0.92, 0.19, and 0.81, respectively. Similarly, for Test set 2, the overall accuracy was 0.44, 0.42, and 0.95, respectively. Our model outperformed gamma analysis in the classification of dose maps containing a single type error, and the performance of our model was inferior in the classification of dose maps containing compound errors. Conclusions A multi‐task CNN model for detecting errors in patient‐specific VMAT QA using a cylindrical measuring device was constructed, and its performance was evaluated. Our results demonstrate that our model was effective in identifying the error type in the dose map for VMAT QA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斑鸠发布了新的文献求助10
刚刚
一一发布了新的文献求助10
刚刚
李健应助专注青雪采纳,获得30
1秒前
共享精神应助忍忍采纳,获得30
2秒前
fixit发布了新的文献求助10
2秒前
2秒前
威武灵阳完成签到,获得积分10
2秒前
胡东东完成签到,获得积分10
2秒前
兼善发布了新的文献求助10
5秒前
5秒前
Owen应助信步采纳,获得10
6秒前
2012xn发布了新的文献求助10
6秒前
手残症完成签到,获得积分10
6秒前
zoe完成签到,获得积分10
6秒前
科研通AI5应助Suliove采纳,获得10
6秒前
英姑应助2023204306324采纳,获得10
6秒前
Yjh完成签到,获得积分10
7秒前
7秒前
XXD5423完成签到,获得积分10
8秒前
Zac发布了新的文献求助10
8秒前
9秒前
juanjuan发布了新的文献求助10
9秒前
绝情汤姆发布了新的文献求助10
9秒前
aaaaaa完成签到,获得积分10
10秒前
10秒前
12秒前
ced发布了新的文献求助10
12秒前
兼善完成签到,获得积分10
14秒前
ker发布了新的文献求助10
15秒前
yangjoy发布了新的文献求助10
15秒前
15秒前
忍忍发布了新的文献求助30
15秒前
hellzhu完成签到,获得积分10
16秒前
ZDSHI完成签到,获得积分20
16秒前
落山姬完成签到,获得积分10
17秒前
打打应助Yuting采纳,获得10
17秒前
大模型应助晴文采纳,获得30
17秒前
17秒前
18秒前
linglingling发布了新的文献求助30
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Quantitative assessment of extraction methods for bound extracellular polymeric substances (B-EPSs) produced by Microcystis sp. and Scenedesmus sp 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4133351
求助须知:如何正确求助?哪些是违规求助? 3670282
关于积分的说明 11605942
捐赠科研通 3366713
什么是DOI,文献DOI怎么找? 1849688
邀请新用户注册赠送积分活动 913255
科研通“疑难数据库(出版商)”最低求助积分说明 828523