清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Unraveling the interplay of image formation, data representation and learning in CT‐based COPD phenotyping automation: The need for a meta‐strategy

自动化 人工智能 机器学习 计算机科学 水准点(测量) 核(代数) 接收机工作特性 荟萃分析 慢性阻塞性肺病 数据挖掘 医学 数学 病理 工程类 内科学 组合数学 机械工程 地理 大地测量学
作者
Alexander Mühlberg,Rainer Kärgel,Alexander Katzmann,Felix Durlak,Peter Allard,Jean‐Baptiste Faivre,Michael Sühling,Martine Rémy‐Jardin,Oliver Taubmann
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5179-5191 被引量:4
标识
DOI:10.1002/mp.15049
摘要

Abstract Purpose In the literature on automated phenotyping of chronic obstructive pulmonary disease (COPD), there is a multitude of isolated classical machine learning and deep learning techniques, mostly investigating individual phenotypes, with small study cohorts and heterogeneous meta‐parameters, e.g., different scan protocols or segmented regions. The objective is to compare the impact of different experimental setups, i.e., varying meta‐parameters related to image formation and data representation, with the impact of the learning technique for subtyping automation for a variety of phenotypes. The identified associations of these parameters with automation performance and their interactions might be a first step towards a determination of optimal meta‐parameters, i.e., a meta‐strategy. Methods A clinical cohort of 981 patients (53.8 ± 15.1 years, 554 male) was examined. The inspiratory CT images were analyzed to automate the diagnosis of 13 COPD phenotypes given by two radiologists. A benchmark feature set that integrates many quantitative criteria was extracted from the lung and trained a variety of learning algorithms on the first 654 patients (two thirds) and the respective algorithm retrospectively assessed the remaining 327 patients (one third). The automation performance was evaluated by the area under the receiver operating characteristic curve (AUC). 1717 experiments were conducted with varying meta‐parameters such as reconstruction kernel, segmented regions and input dimensionality, i.e., number of extracted features. The association of the meta‐parameters with the automation performance was analyzed by multivariable general linear model decomposition of the automation performance in the contributions of meta‐parameters and the learning technique. Results The automation performance varied strongly for varying meta‐parameters. For emphysema‐predominant phenotypes, an AUC of 93%–95% could be achieved for the best meta‐configuration. The airways‐predominant phenotypes led to a lower performance of 65%–85%, while smooth kernel configurations on average were unexpectedly superior to those with sharp kernels. The performance impact of meta‐parameters, even that of often neglected ones like the missing‐data imputation, was in general larger than that of the learning technique. Advanced learning techniques like 3D deep learning or automated machine learning yielded inferior automation performance for non‐optimal meta‐configurations in comparison to simple techniques with suitable meta‐configurations. The best automation performance was achieved by a combination of modern learning techniques and a suitable meta‐configuration. Conclusions Our results indicate that for COPD phenotype automation, study design parameters such as reconstruction kernel and the model input dimensionality should be adapted to the learning technique and may be more important than the technique itself. To achieve optimal automation and prediction results, the interaction between input those meta‐parameters and the learning technique should be considered. This might be particularly relevant for the development of specific scan protocols for novel learning algorithms, and towards an understanding of good study design for automated phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
14秒前
xiu完成签到,获得积分10
17秒前
沉静香氛完成签到 ,获得积分10
17秒前
Yafeiyy___完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
美好灵寒完成签到 ,获得积分10
28秒前
29秒前
1437594843完成签到 ,获得积分10
30秒前
平凡完成签到,获得积分10
31秒前
ywzwszl完成签到,获得积分10
49秒前
50秒前
hello87发布了新的文献求助10
51秒前
平常的三问完成签到 ,获得积分10
52秒前
Wen完成签到 ,获得积分0
52秒前
吴晓峰发布了新的文献求助10
55秒前
熊i发布了新的文献求助10
56秒前
xiu发布了新的文献求助10
1分钟前
Nikola完成签到 ,获得积分10
1分钟前
无限的含羞草完成签到,获得积分10
1分钟前
大气的哈密瓜完成签到,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
NexusExplorer应助吴晓峰采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
vsvsgo完成签到,获得积分10
1分钟前
xiaowanzi完成签到 ,获得积分10
1分钟前
李健应助xiu采纳,获得10
1分钟前
1分钟前
幽默滑板完成签到,获得积分10
2分钟前
像猫的狗完成签到 ,获得积分10
2分钟前
elitistwj完成签到,获得积分10
2分钟前
望向天空的鱼完成签到 ,获得积分10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
量子星尘发布了新的文献求助10
2分钟前
姚老表完成签到,获得积分10
3分钟前
爆米花应助优雅的听兰采纳,获得10
3分钟前
3分钟前
3分钟前
ZZzz完成签到 ,获得积分10
3分钟前
优雅的听兰完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4280504
求助须知:如何正确求助?哪些是违规求助? 3808459
关于积分的说明 11929404
捐赠科研通 3455805
什么是DOI,文献DOI怎么找? 1895189
邀请新用户注册赠送积分活动 944489
科研通“疑难数据库(出版商)”最低求助积分说明 848291