The trade-off between knowledge exploration and exploitation in technological innovation

独创性 知识管理 桥接(联网) 业务 价值(数学) 计算机科学 创造力 心理学 计算机网络 社会心理学 机器学习
作者
Dehong Li,Jun Lin,Wentian Cui,Yanjun Qian
出处
期刊:Journal of Knowledge Management [Emerald Publishing Limited]
卷期号:22 (4): 781-801 被引量:53
标识
DOI:10.1108/jkm-09-2016-0401
摘要

Purpose This study aims to clarify the effect of team effort allocation between knowledge exploration and exploitation on the generation of extremely good or poor innovations. The influence of previous collaborative experience among team members on the effect of team effort allocation is also investigated to understand the relationship between team members’ collaboration networks and knowledge learning. Design/methodology/approach This study uses data of all patents granted by the US Patent and Trademark Office between 1984 and 2010. The inventors involved in a patent are regarded as members of the focal team. Logistic regression is used to analyze the data. Findings Allocating greater effort to exploration than to exploitation is beneficial to achieving breakthrough innovations despite the risk of generating particularly poor innovations. This benefit increases with collaborative experience among team members. Placing an equal emphasis on knowledge exploration and exploitation is not particularly effective in achieving breakthrough innovations; it is, however, the best strategy for avoiding particularly poor innovations. Originality/value This research not only provides valuable insights for research on innovation and knowledge management by studying the team effort allocation strategy used to achieve breakthroughs and avoid particularly poor innovations but also represents an advancement in bridging two streams of research – knowledge learning and social networks – by highlighting the influence of the team members’ collaborative networks on the effect of team effort allocation between knowledge exploration and exploitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
整齐歌曲完成签到,获得积分10
4秒前
4秒前
叶问夏发布了新的文献求助10
4秒前
丘比特应助八位元采纳,获得10
5秒前
5秒前
6秒前
魔幻勒完成签到 ,获得积分20
7秒前
LLK发布了新的文献求助10
8秒前
小土豆完成签到 ,获得积分20
9秒前
呆萌棒棒糖完成签到,获得积分10
10秒前
智博36发布了新的文献求助10
10秒前
siutong完成签到,获得积分10
11秒前
12秒前
领导范儿应助受伤的绮山采纳,获得10
13秒前
13秒前
669完成签到,获得积分10
15秒前
15秒前
小土豆关注了科研通微信公众号
17秒前
18秒前
18秒前
19秒前
19秒前
乐观的小鸡完成签到,获得积分10
19秒前
20秒前
20秒前
Yannis发布了新的文献求助10
21秒前
Doctor_Lee30发布了新的文献求助10
21秒前
22秒前
CodeCraft应助siutong采纳,获得10
22秒前
搜集达人应助谦让又晴采纳,获得10
23秒前
斯文败类应助神经娃采纳,获得10
23秒前
aaaaa小柴发布了新的文献求助10
24秒前
24秒前
cong发布了新的文献求助10
24秒前
我是老大应助rammy采纳,获得10
25秒前
L_online完成签到 ,获得积分10
26秒前
hhh发布了新的文献求助10
26秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 600
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906426
求助须知:如何正确求助?哪些是违规求助? 3452180
关于积分的说明 10868063
捐赠科研通 3177659
什么是DOI,文献DOI怎么找? 1755523
邀请新用户注册赠送积分活动 848845
科研通“疑难数据库(出版商)”最低求助积分说明 791323