Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

沃罗诺图 密度泛函理论 晶体结构预测 镶嵌(计算机图形学) 统计物理学 计算机科学 算法 材料科学 计算科学 几何学 机器学习 数据挖掘 物理 计算化学 化学 分子 数学 量子力学 计算机图形学(图像)
作者
Logan Ward,Ruoqian Liu,Amar Krishna,Vinay I. Hegde,Ankit Agrawal,Alok Choudhary,Chris Wolverton
出处
期刊:Physical review [American Physical Society]
卷期号:96 (2) 被引量:343
标识
DOI:10.1103/physrevb.96.024104
摘要

While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泰钽完成签到,获得积分10
1秒前
ENIX完成签到 ,获得积分10
1秒前
xbj笑哈哈完成签到,获得积分10
2秒前
含蓄的俊驰完成签到,获得积分10
2秒前
冷静完成签到,获得积分10
3秒前
852应助超能力采纳,获得10
3秒前
赘婿应助cxting采纳,获得10
3秒前
4秒前
5秒前
5秒前
搜集达人应助杨院采纳,获得10
5秒前
QZZ完成签到,获得积分10
6秒前
慕青应助友好梦岚采纳,获得10
9秒前
9秒前
QZZ发布了新的文献求助10
9秒前
10秒前
yueee完成签到,获得积分20
10秒前
10秒前
10秒前
shmily发布了新的文献求助20
11秒前
Lawgh完成签到,获得积分10
11秒前
HIy完成签到,获得积分10
12秒前
风清扬发布了新的文献求助50
12秒前
12秒前
13秒前
司空三毒发布了新的文献求助10
13秒前
yueee发布了新的文献求助10
13秒前
终梦应助jinjun采纳,获得10
14秒前
核桃完成签到,获得积分10
14秒前
dachengzi发布了新的文献求助10
14秒前
罗马没有马完成签到 ,获得积分10
14秒前
15秒前
15秒前
清风徐来发布了新的文献求助10
16秒前
超能力发布了新的文献求助10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
puzhongjiMiQ发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5414857
求助须知:如何正确求助?哪些是违规求助? 4531710
关于积分的说明 14129736
捐赠科研通 4447140
什么是DOI,文献DOI怎么找? 2439607
邀请新用户注册赠送积分活动 1431701
关于科研通互助平台的介绍 1409315