Twitter Stance Detection — A Subjectivity and Sentiment Polarity Inspired Two-Phase Approach

学期 计算机科学 任务(项目管理) 情绪分析 支持向量机 人工智能 一般化 机器学习 情绪检测 主观性 特征(语言学) 自然语言处理 数学 哲学 数学分析 经济 认识论 管理 情绪识别 语言学
作者
Kuntal Dey,Ritvik Shrivastava,Saroj Kaushik
标识
DOI:10.1109/icdmw.2017.53
摘要

The problem of stance detection from Twitter tweets, has recently gained significant research attention. This paper addresses the problem of detecting the stance of given tweets, with respect to given topics, from user-generated text (tweets). We use the SemEval 2016 stance detection task dataset. The labels comprise of positive, negative and neutral stances, with respect to given topics. We develop a two-phase feature-driven model. First, the tweets are classified as neutral vs. non-neutral. Next, non-neutral tweets are classified as positive vs. negative. The first phase of our work draws inspiration from the subjectivity classification and the second phase from the sentiment classification literature. We propose the use of two novel features, which along with our streamlined approach, plays a key role deriving the strong results that we obtain. We use traditional support vector machine (SVM) based machine learning. Our system (F-score: 74.44 for SemEval 2016 Task A and 61.57 for Task B) significantly outperforms the state of the art (F-score: 68.98 for Task A and 56.28 for Task B). While the performance of the system on Task A shows the effectiveness of our model for targets on which the model was trained upon, the performance of the system on Task B shows the generalization that our model achieves. The stance detection problem in Twitter is applicable for user opinion mining related applications and other social influence and information flow modeling applications, in real life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷傲的广缘完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
WWW=WWW发布了新的文献求助10
2秒前
petrichor发布了新的文献求助10
3秒前
斯文败类应助小李采纳,获得10
3秒前
77完成签到,获得积分10
3秒前
3秒前
4秒前
大个应助song采纳,获得10
4秒前
5秒前
碧蓝酬海发布了新的文献求助10
5秒前
文俊伟发布了新的文献求助10
6秒前
7秒前
Ray完成签到,获得积分10
7秒前
传奇3应助丰富的幻梦采纳,获得10
7秒前
今后应助gogogogoossip采纳,获得10
7秒前
斯文败类应助陈嘟嘟采纳,获得10
8秒前
香蕉觅云应助111采纳,获得10
9秒前
杨锐应助cxd123采纳,获得20
9秒前
959发布了新的文献求助10
9秒前
JamesPei应助木木采纳,获得10
10秒前
10秒前
77发布了新的文献求助10
10秒前
周什么园完成签到,获得积分10
11秒前
bkagyin应助wonwoo采纳,获得10
12秒前
陆乙完成签到,获得积分10
13秒前
ysyyy完成签到,获得积分20
14秒前
遇上就这样吧应助wnche采纳,获得200
15秒前
11发布了新的文献求助10
16秒前
WWW=WWW完成签到,获得积分0
17秒前
18秒前
Lucas应助陈生采纳,获得10
19秒前
小马甲应助动听元彤采纳,获得10
21秒前
22秒前
科目三应助野性的晓蕾采纳,获得10
23秒前
23秒前
陈嘟嘟发布了新的文献求助10
26秒前
科研通AI6应助拼搏采纳,获得30
26秒前
wei完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533094
求助须知:如何正确求助?哪些是违规求助? 4621559
关于积分的说明 14578975
捐赠科研通 4561617
什么是DOI,文献DOI怎么找? 2499392
邀请新用户注册赠送积分活动 1479257
关于科研通互助平台的介绍 1450500