Abstract The NADPH‐dependent secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus (TeSADH), displaying broad substrate specificity and low enantioselectivity, was engineered to accept NADH as a cofactor. The engineered TeSADH showed a >10 000‐fold switch from NADPH towards NADH compared to the wildtype enzyme. This TeSADH variant was applied to a biocatalytic hydrogen‐borrowing system that employed catalytic amounts of NAD + , ammonia, and an amine dehydrogenase, which thereby enabled the conversion a range of alcohols into chiral amines.