Building extraction method based on the spectral index for high-resolution remote sensing images over urban areas

多光谱图像 遥感 计算机科学 卫星 光谱带 计算 图像分辨率 高光谱成像 特征提取 索引(排版) 多光谱模式识别 萃取(化学) 信息抽取 光谱分辨率 计算机视觉 人工智能 地理 算法 谱线 工程类 化学 色谱法 航空航天工程 万维网 物理 天文
作者
Lingjia Gu,Qiong Cao,Ruizhi Ren
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:12 (04): 1-1 被引量:11
标识
DOI:10.1117/1.jrs.12.045501
摘要

With the advent of high-resolution remote sensing images, automatic building extraction methods play a more important role in rapidly acquiring information about large-scale buildings. Although advanced building extraction methods have been introduced to improve building extraction results, these methods involve complex processing and high-computation times. We put forward an effective method to extract building information, based on a proposed spectral building index. The basic idea of the spectral building index is to generate an optimized index based on the computation and analysis of spectral bands, which are beneficial for image enhancement for buildings in images. Aiming at the band number of the multispectral satellite images in high-resolution remote sensing images, we propose two spectral indices for building extraction, including the normalized spectral building index (NSBI) and the difference spectral building index (DSBI). Considering the current spectral band number of high-resolution satellite images, NSBI is suited for satellite images with eight spectral bands, whereas DSBI is suited for satellite images with four spectral bands. The proposed method is validated on various high-resolution images including WorldView-2, GF-1, GF-2, and QuickBird images with 13 experiment datasets, as well as a detailed comparison to the state-of-the-art methods, such as the morphological building index, nonhomogeneous feature difference, and building condition index. The experimental results reveal that the proposed method can achieve promising results for different building conditions, such as regular and irregular building shapes and concrete and metal roofing materials. The average overall accuracy was over 85% with low-time consumption (<1 s).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
TT001完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
chen发布了新的文献求助10
6秒前
wodeqiche2007发布了新的文献求助30
6秒前
123发布了新的文献求助10
8秒前
wm发布了新的文献求助10
8秒前
cc完成签到,获得积分10
8秒前
Jasper应助luanzhaohui采纳,获得10
8秒前
9秒前
韦老虎发布了新的文献求助200
9秒前
11秒前
香香香发布了新的文献求助10
12秒前
啥啥不会发布了新的文献求助10
12秒前
lyu关闭了lyu文献求助
13秒前
黑大帅发布了新的文献求助10
13秒前
SciGPT应助伶俐的夜梦采纳,获得30
16秒前
17秒前
17秒前
18秒前
18秒前
SCI发发发发布了新的文献求助10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
livr发布了新的文献求助10
20秒前
22秒前
22秒前
22秒前
一语初晴发布了新的文献求助10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
Yayaqq发布了新的文献求助10
23秒前
我爱毕设完成签到 ,获得积分10
24秒前
24秒前
TT发布了新的文献求助10
24秒前
小明发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5819759
求助须知:如何正确求助?哪些是违规求助? 5961859
关于积分的说明 15553611
捐赠科研通 4941588
什么是DOI,文献DOI怎么找? 2661562
邀请新用户注册赠送积分活动 1607888
关于科研通互助平台的介绍 1562828