卡林
Skp1型
路易体
泛素
好斗的
细胞生物学
泛素连接酶
生物
α-突触核蛋白
内化
额颞叶变性
乳酰丝汀
化学
细胞
病理
蛋白酶体
医学
生物化学
帕金森病
失智症
蛋白酶体抑制剂
痴呆
疾病
基因
作者
Juan Gerez,Natalia Cecilia Prymaczok,Edward Rockenstein,U. Herrmann,Petra Schwarz,Anthony Adame,Radoslav I. Enchev,Thibault Courthéoux,Paul J. Boersema,Roland Riek,Matthias Peter,Adriano Aguzzi,Eliezer Masliah,Paola Picotti
标识
DOI:10.1126/scitranslmed.aau6722
摘要
Parkinson's disease (PD) is a neurological disorder characterized by the progressive accumulation of neuronal α-synuclein (αSyn) inclusions called Lewy bodies. It is believed that Lewy bodies spread throughout the nervous system due to the cell-to-cell propagation of αSyn via cycles of secretion and uptake. Here, we investigated the internalization and intracellular accumulation of exogenous αSyn, two key steps of Lewy body pathogenesis, amplification and spreading. We found that stable αSyn fibrils substantially accumulate in different cell lines upon internalization, whereas αSyn monomers, oligomers, and dissociable fibrils do not. Our data indicate that the uptake-mediated accumulation of αSyn in a human-derived neuroblastoma cell line triggered an adaptive response that involved proteins linked to ubiquitin ligases of the S-phase kinase-associated protein 1 (SKP1), cullin-1 (Cul1), and F-box domain-containing protein (SCF) family. We found that SKP1, Cul1, and the F-box/LRR repeat protein 5 (FBXL5) colocalized and physically interacted with internalized αSyn in cultured cells. Moreover, the SCF containing the F-box protein FBXL5 (SCFFBXL5) catalyzed αSyn ubiquitination in reconstitution experiments in vitro using recombinant proteins and in cultured cells. In the human brain, SKP1 and Cul1 were recruited into Lewy bodies from brainstem and neocortex of patients with PD and related neurological disorders. In both transgenic and nontransgenic mice, intracerebral administration of exogenous αSyn fibrils triggered a Lewy body-like pathology, which was amplified by SKP1 or FBXL5 loss of function. Our data thus indicate that SCFFXBL5 regulates αSyn in vivo and that SCF ligases may constitute targets for the treatment of PD and other α-synucleinopathies.
科研通智能强力驱动
Strongly Powered by AbleSci AI