Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet

接收机工作特性 前列腺癌 医学 磁共振成像 卷积神经网络 前列腺切除术 放射科 计算机科学 人工智能 癌症 内科学
作者
Ruiming Cao,Amirhossein Mohammadian Bajgiran,Sohrab Afshari Mirak,Sepideh Shakeri,Xinran Zhong,Dieter R. Enzmann,Steven S. Raman,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (11): 2496-2506 被引量:177
标识
DOI:10.1109/tmi.2019.2901928
摘要

Multi-parametric MRI (mp-MRI) is considered the best non-invasive imaging modality for diagnosing prostate cancer (PCa). However, mp-MRI for PCa diagnosis is currently limited by the qualitative or semi-quantitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness. Convolutional neural networks (CNNs) are a powerful method to automatically learn the discriminative features for various tasks, including cancer detection. We propose a novel multi-class CNN, FocalNet, to jointly detect PCa lesions and predict their aggressiveness using Gleason score (GS). FocalNet characterizes lesion aggressiveness and fully utilizes distinctive knowledge from mp-MRI. We collected a prostate mp-MRI dataset from 417 patients who underwent 3T mp-MRI exams prior to robotic-assisted laparoscopic prostatectomy. FocalNet was trained and evaluated in this large study cohort with fivefold cross validation. In the free-response receiver operating characteristics (FROC) analysis for lesion detection, FocalNet achieved 89.7% and 87.9% sensitivity for index lesions and clinically significant lesions at one false positive per patient, respectively. For the GS classification, evaluated by the receiver operating characteristics (ROC) analysis, FocalNet received the area under the curve of 0.81 and 0.79 for the classifications of clinically significant PCa (GS ≥ 3 + 4) and PCa with GS ≥ 4 + 3, respectively. With the comparison to the prospective performance of radiologists using the current diagnostic guideline, FocalNet demonstrated comparable detection sensitivity for index lesions and clinically significant lesions, only 3.4% and 1.5% lower than highly experienced radiologists without statistical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芜6完成签到,获得积分10
1秒前
南风知我意完成签到,获得积分10
1秒前
共渡完成签到,获得积分10
2秒前
qhdsyxy完成签到 ,获得积分10
2秒前
2秒前
YooLoo完成签到,获得积分10
3秒前
我爱科研科研爱我完成签到,获得积分10
3秒前
一丢丢发布了新的文献求助100
3秒前
4秒前
无限的小懒虫完成签到,获得积分10
4秒前
木香完成签到,获得积分10
4秒前
jielailai完成签到,获得积分10
4秒前
褚驳完成签到,获得积分10
4秒前
四爷完成签到,获得积分10
5秒前
Hesitate完成签到,获得积分10
5秒前
舒适逊发布了新的文献求助10
7秒前
yeye完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助lf-leo采纳,获得10
7秒前
Lucas应助聪聪采纳,获得10
8秒前
Akim应助Dandy采纳,获得10
8秒前
8秒前
8秒前
wyz完成签到,获得积分10
8秒前
mocheer完成签到,获得积分10
8秒前
pi完成签到 ,获得积分10
8秒前
Hesitate发布了新的文献求助10
9秒前
科研通AI2S应助嘿嘿嘿采纳,获得10
10秒前
nxu发布了新的文献求助10
10秒前
一小部分我完成签到 ,获得积分10
10秒前
AJ完成签到 ,获得积分10
10秒前
翟大有完成签到 ,获得积分0
12秒前
沫柠完成签到 ,获得积分10
12秒前
风清扬应助Luna采纳,获得10
12秒前
结实的栾完成签到,获得积分10
13秒前
MADAO完成签到 ,获得积分10
13秒前
搜集达人应助keke采纳,获得10
13秒前
Levi完成签到,获得积分10
14秒前
DreamLover完成签到,获得积分10
14秒前
小明完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
Formula 1 Technology 1500
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030538
求助须知:如何正确求助?哪些是违规求助? 3569258
关于积分的说明 11357473
捐赠科研通 3299871
什么是DOI,文献DOI怎么找? 1816895
邀请新用户注册赠送积分活动 890996
科研通“疑难数据库(出版商)”最低求助积分说明 814001