De Novo Molecule Design by Translating from Reduced Graphs to SMILES

化学信息学 化学空间 计算机科学 分子图 图形 理论计算机科学 代表(政治) 集合(抽象数据类型) 人工智能 机器学习 化学 药物发现 计算化学 政治 生物化学 程序设计语言 法学 政治学
作者
Péter Pogány,Navot Arad,Sam Genway,Stephen D. Pickett
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (3): 1136-1146 被引量:51
标识
DOI:10.1021/acs.jcim.8b00626
摘要

A key component of automated molecular design is the generation of compound ideas for subsequent filtering and assessment. Recently deep learning approaches have been explored as alternatives to traditional de novo molecular design techniques. Deep learning algorithms rely on learning from large pools of molecules represented as molecular graphs (generally SMILES), and several approaches can be used to tailor the generated molecules to defined regions of chemical space. Cheminformatics has developed alternative higher-level representations that capture the key properties of a set of molecules, and it would be of interest to understand whether such representations can be used to constrain the output of molecule generation algorithms. In this work we explore the use of one such representation, the Reduced Graph, as a definition of target chemical space for a deep learning molecule generator. The Reduced Graph replaces functional groups with superatoms representing the pharmacophoric features. Assigning these superatoms to specific nonorganic element types allows the Reduced Graph to be represented as a valid SMILES string. The mapping from standard SMILES to Reduced Graph SMILES is well-defined, however, the inverse is not true, and this presents a particular challenge. Here we present the results of a novel seq-to-seq approach to molecule generation, where the one to many mapping of Reduced Graph to SMILES is learned on a large training set. This training needs to be performed only once. In a subsequent step, this model can be used to generate arbitrary numbers of compounds that have the same Reduced Graph as any input molecule. Through analysis of data sets in ChEMBL we show that the approach generates valid molecules and can extrapolate to Reduced Graphs unseen in the training set. The method offers an alternative deep learning approach to molecule generation that does not rely on transfer learning, latent space generation, or adversarial networks and is applicable to scaffold hopping and other cheminformatics applications in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
mar1完成签到,获得积分10
3秒前
doctor2023完成签到,获得积分10
3秒前
科研完成签到,获得积分10
3秒前
雷家完成签到,获得积分10
3秒前
桐桐应助文旭采纳,获得10
3秒前
12324发布了新的文献求助10
3秒前
again完成签到,获得积分10
3秒前
书蠹诗魔完成签到,获得积分10
3秒前
复杂的棒球完成签到,获得积分10
3秒前
滴滴发布了新的文献求助10
3秒前
致两千年前的你完成签到,获得积分10
4秒前
4秒前
小苏打完成签到,获得积分10
4秒前
研友_nEoEy8完成签到,获得积分10
4秒前
香蕉觅云应助Trista0036采纳,获得30
4秒前
4秒前
冷傲小小完成签到,获得积分10
5秒前
5秒前
哈哈完成签到 ,获得积分10
5秒前
5秒前
体贴的立果完成签到,获得积分10
5秒前
5秒前
搜集达人应助糖油果子采纳,获得10
5秒前
成就完成签到,获得积分10
6秒前
闫栋发布了新的文献求助10
6秒前
KristenStewart完成签到,获得积分10
6秒前
裴雅柔完成签到,获得积分10
7秒前
迷你的棒球完成签到,获得积分10
8秒前
小马甲应助if采纳,获得10
8秒前
8秒前
李杰杰发布了新的文献求助10
8秒前
丘比特应助茶博士采纳,获得10
9秒前
lizy完成签到,获得积分10
9秒前
MYSHOW完成签到,获得积分20
10秒前
念念发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402461
求助须知:如何正确求助?哪些是违规求助? 4521103
关于积分的说明 14083816
捐赠科研通 4435114
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405445