De Novo Molecule Design by Translating from Reduced Graphs to SMILES

化学信息学 化学空间 计算机科学 分子图 图形 理论计算机科学 代表(政治) 集合(抽象数据类型) 人工智能 机器学习 化学 药物发现 计算化学 政治 生物化学 程序设计语言 法学 政治学
作者
Péter Pogány,Navot Arad,Sam Genway,Stephen D. Pickett
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (3): 1136-1146 被引量:51
标识
DOI:10.1021/acs.jcim.8b00626
摘要

A key component of automated molecular design is the generation of compound ideas for subsequent filtering and assessment. Recently deep learning approaches have been explored as alternatives to traditional de novo molecular design techniques. Deep learning algorithms rely on learning from large pools of molecules represented as molecular graphs (generally SMILES), and several approaches can be used to tailor the generated molecules to defined regions of chemical space. Cheminformatics has developed alternative higher-level representations that capture the key properties of a set of molecules, and it would be of interest to understand whether such representations can be used to constrain the output of molecule generation algorithms. In this work we explore the use of one such representation, the Reduced Graph, as a definition of target chemical space for a deep learning molecule generator. The Reduced Graph replaces functional groups with superatoms representing the pharmacophoric features. Assigning these superatoms to specific nonorganic element types allows the Reduced Graph to be represented as a valid SMILES string. The mapping from standard SMILES to Reduced Graph SMILES is well-defined, however, the inverse is not true, and this presents a particular challenge. Here we present the results of a novel seq-to-seq approach to molecule generation, where the one to many mapping of Reduced Graph to SMILES is learned on a large training set. This training needs to be performed only once. In a subsequent step, this model can be used to generate arbitrary numbers of compounds that have the same Reduced Graph as any input molecule. Through analysis of data sets in ChEMBL we show that the approach generates valid molecules and can extrapolate to Reduced Graphs unseen in the training set. The method offers an alternative deep learning approach to molecule generation that does not rely on transfer learning, latent space generation, or adversarial networks and is applicable to scaffold hopping and other cheminformatics applications in drug discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的寄真完成签到 ,获得积分10
刚刚
兮兮完成签到 ,获得积分10
1秒前
开心的西瓜完成签到,获得积分10
1秒前
2秒前
江鑫楷完成签到,获得积分10
2秒前
夏天就是桃子味完成签到,获得积分10
3秒前
拓展完成签到 ,获得积分10
3秒前
wwwww123发布了新的文献求助10
3秒前
狂野白梅完成签到,获得积分10
3秒前
忐忑的邑完成签到,获得积分10
4秒前
木木三完成签到,获得积分10
4秒前
4秒前
Gins完成签到,获得积分10
5秒前
5秒前
5秒前
可靠橘子完成签到,获得积分10
5秒前
5秒前
6秒前
活泼小笼包完成签到,获得积分10
6秒前
傲娇的咖啡豆完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
落后的慕梅完成签到 ,获得积分10
8秒前
Gunpowder完成签到,获得积分10
8秒前
xinyuDuan完成签到,获得积分10
8秒前
饱满跳跳糖完成签到,获得积分10
8秒前
顾矜应助靓丽初蓝采纳,获得10
8秒前
洪悦冰发布了新的文献求助30
8秒前
充电宝应助史莱姆姆采纳,获得10
8秒前
碳土不凡完成签到 ,获得积分0
8秒前
Sindy完成签到,获得积分10
8秒前
云为晓发布了新的文献求助10
9秒前
Rocc完成签到,获得积分10
9秒前
wulin314完成签到,获得积分10
9秒前
asdfzxcv应助材料诚采纳,获得10
10秒前
Lucas应助major采纳,获得10
10秒前
青牛完成签到,获得积分10
10秒前
ding应助火星上新波采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451