亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

De Novo Molecule Design by Translating from Reduced Graphs to SMILES

化学信息学 化学空间 计算机科学 分子图 图形 理论计算机科学 代表(政治) 集合(抽象数据类型) 人工智能 机器学习 化学 药物发现 计算化学 政治 生物化学 程序设计语言 法学 政治学
作者
Péter Pogány,Navot Arad,Sam Genway,Stephen D. Pickett
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (3): 1136-1146 被引量:51
标识
DOI:10.1021/acs.jcim.8b00626
摘要

A key component of automated molecular design is the generation of compound ideas for subsequent filtering and assessment. Recently deep learning approaches have been explored as alternatives to traditional de novo molecular design techniques. Deep learning algorithms rely on learning from large pools of molecules represented as molecular graphs (generally SMILES), and several approaches can be used to tailor the generated molecules to defined regions of chemical space. Cheminformatics has developed alternative higher-level representations that capture the key properties of a set of molecules, and it would be of interest to understand whether such representations can be used to constrain the output of molecule generation algorithms. In this work we explore the use of one such representation, the Reduced Graph, as a definition of target chemical space for a deep learning molecule generator. The Reduced Graph replaces functional groups with superatoms representing the pharmacophoric features. Assigning these superatoms to specific nonorganic element types allows the Reduced Graph to be represented as a valid SMILES string. The mapping from standard SMILES to Reduced Graph SMILES is well-defined, however, the inverse is not true, and this presents a particular challenge. Here we present the results of a novel seq-to-seq approach to molecule generation, where the one to many mapping of Reduced Graph to SMILES is learned on a large training set. This training needs to be performed only once. In a subsequent step, this model can be used to generate arbitrary numbers of compounds that have the same Reduced Graph as any input molecule. Through analysis of data sets in ChEMBL we show that the approach generates valid molecules and can extrapolate to Reduced Graphs unseen in the training set. The method offers an alternative deep learning approach to molecule generation that does not rely on transfer learning, latent space generation, or adversarial networks and is applicable to scaffold hopping and other cheminformatics applications in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助科研通管家采纳,获得30
1分钟前
馆长应助科研通管家采纳,获得30
1分钟前
馆长应助科研通管家采纳,获得30
1分钟前
馆长应助科研通管家采纳,获得30
1分钟前
酷波er应助奕奕采纳,获得10
1分钟前
1分钟前
奕奕发布了新的文献求助10
1分钟前
天天快乐应助Macfee采纳,获得50
1分钟前
落落洛栖完成签到 ,获得积分10
2分钟前
yumihuhu完成签到 ,获得积分10
2分钟前
kklkimo完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助20
3分钟前
Beyond095完成签到 ,获得积分10
3分钟前
zizideng完成签到,获得积分10
3分钟前
3分钟前
Krim完成签到 ,获得积分0
3分钟前
literature发布了新的文献求助10
3分钟前
4分钟前
Macfee发布了新的文献求助50
4分钟前
literature完成签到,获得积分20
4分钟前
Macfee完成签到,获得积分10
4分钟前
kbcbwb2002完成签到,获得积分10
4分钟前
欢呼的飞荷完成签到 ,获得积分10
5分钟前
馆长应助科研通管家采纳,获得20
5分钟前
馆长应助科研通管家采纳,获得20
5分钟前
馆长应助科研通管家采纳,获得20
5分钟前
馆长应助科研通管家采纳,获得20
5分钟前
cen发布了新的文献求助10
5分钟前
Jasper应助白华苍松采纳,获得10
6分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
6分钟前
8分钟前
8分钟前
8分钟前
白华苍松发布了新的文献求助10
9分钟前
奕奕完成签到,获得积分10
9分钟前
Lucas应助科研通管家采纳,获得150
9分钟前
有魅力的不评完成签到,获得积分10
9分钟前
klio完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851793
求助须知:如何正确求助?哪些是违规求助? 4150295
关于积分的说明 12856796
捐赠科研通 3898399
什么是DOI,文献DOI怎么找? 2142447
邀请新用户注册赠送积分活动 1162189
关于科研通互助平台的介绍 1062438