Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants

漆酶 化学 催化作用 水溶液中的金属离子 组合化学 金属 纳米材料 纳米技术 有机化学 材料科学
作者
Jinghui Wang,Renliang Huang,Wei Qi,Rongxin Su,Bernard P. Binks,Zhimin He
出处
期刊:Applied Catalysis B-environmental [Elsevier]
卷期号:254: 452-462 被引量:229
标识
DOI:10.1016/j.apcatb.2019.05.012
摘要

Nanozymes, defined as nanomaterials with enzyme-like activity, have attracted extensive interest in both fundamental and applied research. Laccases are members of the multi-copper oxidases, which are utilized as green catalysts in the environmental catalysis and biochemical industry. In this paper, we report a facile strategy for the preparation of a new class of nanozyme (denoted as CH-Cu) with laccase-like activity inspired by the structure of the active site and the electron transfer pathway of laccase via the coordination of Cu+/Cu2+ with a cysteine (Cys)-histidine (His) dipeptide. The CH-Cu nanozymes exhibit excellent catalytic activity, recyclability and substrate universality and have a similar Km (Michaelis constant) and a higher vmax (maximum rate) than laccase at the same mass concentration. They are robust under a variety of conditions, such as extreme pH, high temperature, long-term storage and high salinity, which can cause severe loss in the catalytic activity of laccase. Higher efficacy of the CH-Cu nanozymes compared with laccase in the degradation of chlorophenols and bisphenols is also demonstrated in a batch reaction. Furthermore, a method for the quantitative detection of epinephrine by a smart phone is established based on the CH-Cu nanozymes. We believe that this nanozyme has promising applications in environmental catalysis and rapid detection and expect that combining key peptides as metal ligands with metal ions to mimic the structure of the catalytic center of a natural enzyme will be a general and important strategy for the design and synthesis of a new type of nanozyme that can be used in various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助啦啦啦采纳,获得10
刚刚
花开四海发布了新的文献求助10
刚刚
程雯慧完成签到,获得积分10
1秒前
4秒前
A章发布了新的文献求助10
5秒前
5秒前
失眠夏山完成签到,获得积分10
9秒前
xiaochen发布了新的文献求助10
9秒前
啦啦啦完成签到,获得积分10
10秒前
ZZICU完成签到,获得积分10
10秒前
Mike001发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
Mike001发布了新的文献求助10
14秒前
Mike001发布了新的文献求助10
14秒前
Mike001发布了新的文献求助10
15秒前
16秒前
小乔同学发布了新的文献求助10
17秒前
Mike001发布了新的文献求助10
17秒前
17秒前
17秒前
Mike001发布了新的文献求助10
18秒前
18秒前
Mike001发布了新的文献求助10
20秒前
20秒前
圆珠笔发布了新的文献求助10
20秒前
Mike001发布了新的文献求助10
21秒前
Mike001发布了新的文献求助10
22秒前
23秒前
24秒前
Mike001发布了新的文献求助10
24秒前
24秒前
27秒前
28秒前
huaming完成签到,获得积分10
29秒前
留柳发布了新的文献求助20
29秒前
WhesmY完成签到 ,获得积分10
30秒前
32秒前
刚子发布了新的文献求助10
36秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422652
求助须知:如何正确求助?哪些是违规求助? 2111802
关于积分的说明 5346708
捐赠科研通 1839225
什么是DOI,文献DOI怎么找? 915590
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489710