超顺磁性
氧化铁纳米粒子
材料科学
纳米颗粒
钇
分析化学(期刊)
氧化铁
循环伏安法
电化学
核化学
钇铁石榴石
氧化物
纳米技术
化学工程
磁化
电极
化学
冶金
物理化学
磁场
色谱法
工程类
物理
量子力学
作者
Mustafa Aghazadeh,Isa Karimzadeh,Mohammad Ghannadi Maragheh,Mohammad Reza Ganjali
标识
DOI:10.1590/1980-5373-mr-2018-0094
摘要
A one-pot electrosynthesis platform is reported for fabrication of Y3+ doped iron oxide nanoparticles (Y-IONPs). In this procedure, Y-IONPs are electro-deposited from an additive-free aqueous solution of iron(III) nitrate, iron(II) chloride and yttrium chloride. The analysis data provided by X-ray diffraction (XRD), field emission electron microscopy (FE-SEM) and energy-dispersive X-ray (EDX) confirmed that the deposited Y-IONPs sample is composed of magnetite nanoparticles (size≈20nm) doped with about 10wt% Y3+ cations. The performance of the prepared Y-IONPs as supercapacitor electrode material was studied using cyclic voltammetry (CV) and galvanostat charge-discharge (GCD) tests. The obtained electrochemical data showed that Y-IONPs provide SCs as high as 190.3 and 138.9 F g−1 at the discharge loads of 0.25 and 1 A g−1, respectively, and capacity retentions of 95.9% and 88.5% after 2000 GCD cycling. Furthermore, the results of vibrating sample magnetometer measurements confirmed better superparamagnetic behavior of Y-IONPs (Mr=0.32 emu g-1 and HCi= 6.31 G) as compared with pure IONPs (Mr=0.95 emu g-1 and HCi= 14.62 G) resulting from their lower Mr and Hci values. Based on the obtained results, the developed electro-synthesis method was introduced as a facile procedure for the preparation of high performance metal ion doped magnetite nanoparticles.
科研通智能强力驱动
Strongly Powered by AbleSci AI