Cell competition and tumorigenesis in the imaginal discs of Drosophila

影像盘 果蝇属(亚属) 有机体 癌变 模式生物 生物 黑腹果蝇 竞赛(生物学) 细胞生物学 遗传筛选 遗传模型 癌症 进化生物学 遗传学 表型 基因 生态学
作者
Ginés Morata,Manuel Calleja
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:63: 19-26 被引量:22
标识
DOI:10.1016/j.semcancer.2019.06.010
摘要

Cancer is a major health issue and the object of investigations in thousands of laboratories all over the world. Most of cancer research is being carried out in in vitro systems or in animal models, generally mice or rats. However, the discovery of the high degree of genetic identity among metazoans has prompted investigation in organisms like Drosophila, on the idea that the genetic basis of cancer in flies and humans may have many aspects in common. Moreover, the sophisticated genetic methodology of Drosophila offers operational advantages and allows experimental approaches inaccessible in other species. Cell competition is a cell-quality control process that aims to identifying and subsequently removing cells within animal tissues that are unfit, abnormal or aberrant, and that may compromise the fitness or the viability of the organism. It was originally described in Drosophila imaginal discs but later work has shown it occurs in mammalian tissues where it fulfils similar roles. One aspect of the surveillance role of cell competition is to eliminate oncogenic cells that may appear during development or the life of an organism. In this review we have focussed on the work on Drosophila imaginal discs relating cell competition and tumorigenic processes. We briefly discuss related work in mammalian tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七喜完成签到 ,获得积分10
1秒前
1秒前
2秒前
orixero应助典雅的静采纳,获得10
2秒前
2秒前
唐三神奇发布了新的文献求助10
3秒前
3秒前
3秒前
丘比特应助逍遥采纳,获得10
3秒前
CTtoF发布了新的文献求助10
4秒前
4秒前
ZY关闭了ZY文献求助
4秒前
慕辰完成签到,获得积分10
4秒前
7秒前
xuezha发布了新的文献求助10
7秒前
小卡拉米发布了新的文献求助10
9秒前
10秒前
DL完成签到 ,获得积分10
10秒前
jekyll发布了新的文献求助10
10秒前
科研通AI5应助hyy采纳,获得10
10秒前
10秒前
shanshan发布了新的文献求助30
11秒前
nbing发布了新的文献求助10
12秒前
科研小狗完成签到 ,获得积分10
14秒前
15秒前
春山关注了科研通微信公众号
16秒前
英俊的铭应助天韧采纳,获得10
16秒前
张祖伦发布了新的文献求助10
17秒前
17秒前
CWNU_HAN应助热情的天晴采纳,获得30
17秒前
赘婿应助桂桂阿云采纳,获得10
18秒前
善学以致用应助jekyll采纳,获得10
20秒前
科研通AI5应助小卡拉米采纳,获得10
21秒前
深情安青应助Evaporate采纳,获得10
22秒前
zzr元亨利贞完成签到,获得积分10
23秒前
23秒前
852应助Angie采纳,获得10
23秒前
dery完成签到,获得积分10
23秒前
25秒前
25秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Spatio-Temporal Stock Prediction Method Based on End-to-End Learning with Attention Mechanism 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836233
求助须知:如何正确求助?哪些是违规求助? 3378583
关于积分的说明 10504968
捐赠科研通 3098204
什么是DOI,文献DOI怎么找? 1706318
邀请新用户注册赠送积分活动 820958
科研通“疑难数据库(出版商)”最低求助积分说明 772349