Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 地理 统计
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:61
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJFL完成签到,获得积分10
刚刚
1秒前
orixero应助ab采纳,获得10
1秒前
2秒前
xiaohu完成签到,获得积分10
2秒前
薛同学发布了新的文献求助10
3秒前
在水一方应助ldz采纳,获得10
3秒前
2bz应助奋斗惮采纳,获得10
3秒前
温柔手机发布了新的文献求助10
4秒前
yss发布了新的文献求助10
4秒前
xxfsx应助巧克力汉堡采纳,获得10
4秒前
4秒前
5秒前
FashionBoy应助热心绿兰采纳,获得10
5秒前
ww给ww的求助进行了留言
6秒前
6秒前
Eric完成签到,获得积分10
6秒前
6秒前
小蘑菇应助yhp采纳,获得10
7秒前
YYD123发布了新的文献求助30
7秒前
科研之路完成签到,获得积分10
7秒前
qjd发布了新的文献求助10
8秒前
刘乐艺发布了新的文献求助30
8秒前
一只啾咪发布了新的文献求助10
8秒前
科研通AI6应助123yaoyao采纳,获得10
8秒前
充电宝应助土星采纳,获得10
9秒前
和其正发布了新的文献求助10
9秒前
在水一方应助大力信封采纳,获得10
9秒前
浮游应助Yam采纳,获得10
9秒前
cc发布了新的文献求助10
10秒前
10秒前
10秒前
善学以致用应助谜迪采纳,获得10
11秒前
深情安青应助Li采纳,获得10
11秒前
12秒前
轻松明雪发布了新的文献求助10
12秒前
英吉利25发布了新的文献求助10
13秒前
sincyking完成签到,获得积分10
13秒前
人工智能小配方完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285983
求助须知:如何正确求助?哪些是违规求助? 4438872
关于积分的说明 13819173
捐赠科研通 4320458
什么是DOI,文献DOI怎么找? 2371458
邀请新用户注册赠送积分活动 1367032
关于科研通互助平台的介绍 1330429