已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online Mixed-Integer Optimization in Milliseconds

解算器 计算机科学 最优化问题 数学优化 整数规划 二次规划 水准点(测量) 加速 在线模型 算法 数学 并行计算 大地测量学 统计 地理
作者
Dimitris Bertsimas,Bartolomeo Stellato
出处
期刊:Informs Journal on Computing 卷期号:34 (4): 2229-2248 被引量:61
标识
DOI:10.1287/ijoc.2022.1181
摘要

We propose a method to approximate the solution of online mixed-integer optimization (MIO) problems at very high speed using machine learning. By exploiting the repetitive nature of online optimization, we can greatly speed up the solution time. Our approach encodes the optimal solution into a small amount of information denoted as strategy using the voice of optimization framework. In this way, the core part of the optimization routine becomes a multiclass classification problem that can be solved very quickly. In this work, we extend that framework to real-time and high-speed applications focusing on parametric mixed-integer quadratic optimization. We propose an extremely fast online optimization method consisting of a feedforward neural network evaluation and a linear system solution where the matrix has already been factorized. Therefore, this online approach does not require any solver or iterative algorithm. We show the speed of the proposed method both in terms of total computations required and measured execution time. We estimate the number of floating point operations required to completely recover the optimal solution as a function of the problem dimensions. Compared with state-of-the-art MIO routines, the online running time of our method is very predictable and can be lower than a single matrix factorization time. We benchmark our method against the state-of-the-art solver Gurobi obtaining up to two to three orders of magnitude speedups on examples from fuel cell energy management, sparse portfolio optimization, and motion planning with obstacle avoidance. Summary of Contribution: We propose a technique to approximate the solution of online optimization problems at high speed using machine learning. By exploiting the repetitive nature of online optimization, we learn the mapping between the key problem parameters and an encoding of the optimal solution to greatly speed up the solution time. This allows us to significantly improve the computation time and resources needed to solve online mixed-integer optimization problems. We obtain a simple method with a very low computing time variance, which is crucial in online settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
indigo发布了新的文献求助10
刚刚
萝卜特乐完成签到,获得积分10
5秒前
阿四辣酱完成签到,获得积分10
6秒前
9秒前
山火发布了新的文献求助10
9秒前
Jeffery发布了新的文献求助10
14秒前
zx完成签到,获得积分10
16秒前
华仔应助山火采纳,获得10
19秒前
直率的钢铁侠完成签到,获得积分10
20秒前
21秒前
iNk应助可爱的彩虹采纳,获得20
23秒前
24秒前
CipherSage应助小巧的可仁采纳,获得10
24秒前
科研通AI5应助小巧的可仁采纳,获得10
24秒前
24秒前
24秒前
jrxjzy完成签到 ,获得积分10
24秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得30
25秒前
liuliuliu完成签到 ,获得积分10
25秒前
科研通AI5应助健忘幻儿采纳,获得10
28秒前
麦克完成签到,获得积分10
28秒前
王森发布了新的文献求助10
31秒前
32秒前
ick558完成签到,获得积分10
33秒前
33秒前
王森完成签到,获得积分20
37秒前
点点发布了新的文献求助10
38秒前
42秒前
现代的擎苍完成签到,获得积分10
49秒前
50秒前
耐斯糖完成签到 ,获得积分10
51秒前
52秒前
dandna完成签到 ,获得积分10
53秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324680
关于积分的说明 10219180
捐赠科研通 3039653
什么是DOI,文献DOI怎么找? 1668358
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467