Sensor Modalities for Brain-Computer Interface Technology: A Comprehensive Literature Review

医学 模式 脑-机接口 接口(物质) 人机交互 医学物理学 神经科学 脑电图 精神科 操作系统 社会科学 计算机科学 生物 最大气泡压力法 社会学 气泡
作者
Michael L. Martini,Eric K. Oermann,Nicholas L. Opie,Fedor Panov,Thomas J. Oxley,Kurt Yaeger
出处
期刊:Neurosurgery [Oxford University Press]
卷期号:86 (2): E108-E117 被引量:103
标识
DOI:10.1093/neuros/nyz286
摘要

Abstract Brain-computer interface (BCI) technology is rapidly developing and changing the paradigm of neurorestoration by linking cortical activity with control of an external effector to provide patients with tangible improvements in their ability to interact with the environment. The sensor component of a BCI circuit dictates the resolution of brain pattern recognition and therefore plays an integral role in the technology. Several sensor modalities are currently in use for BCI applications and are broadly either electrode-based or functional neuroimaging-based. Sensors vary in their inherent spatial and temporal resolutions, as well as in practical aspects such as invasiveness, portability, and maintenance. Hybrid BCI systems with multimodal sensory inputs represent a promising development in the field allowing for complimentary function. Artificial intelligence and deep learning algorithms have been applied to BCI systems to achieve faster and more accurate classifications of sensory input and improve user performance in various tasks. Neurofeedback is an important advancement in the field that has been implemented in several types of BCI systems by showing users a real-time display of their recorded brain activity during a task to facilitate their control over their own cortical activity. In this way, neurofeedback has improved BCI classification and enhanced user control over BCI output. Taken together, BCI systems have progressed significantly in recent years in terms of accuracy, speed, and communication. Understanding the sensory components of a BCI is essential for neurosurgeons and clinicians as they help advance this technology in the clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Woo_SH发布了新的文献求助10
刚刚
刚刚
1秒前
寒冷猫咪发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
xh发布了新的文献求助10
3秒前
LiuMeng完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
科研通AI6应助谈欣采纳,获得10
5秒前
5秒前
6秒前
6秒前
英姑应助粱从寒采纳,获得10
6秒前
6秒前
大胆铃铛完成签到,获得积分20
6秒前
情怀应助瑞雪采纳,获得10
7秒前
无感发布了新的文献求助10
8秒前
8秒前
8秒前
漂流的云朵完成签到,获得积分10
9秒前
杨佳完成签到,获得积分10
9秒前
ccc完成签到,获得积分0
9秒前
XIAOYU发布了新的文献求助10
10秒前
10秒前
11秒前
小新发布了新的文献求助30
11秒前
11秒前
健壮的化蛹完成签到 ,获得积分10
11秒前
11秒前
12秒前
小蘑菇应助liyang采纳,获得10
12秒前
子车半烟发布了新的文献求助10
13秒前
搜集达人应助寒冷猫咪采纳,获得10
13秒前
jttjtjtj发布了新的文献求助10
13秒前
13秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532960
求助须知:如何正确求助?哪些是违规求助? 4621474
关于积分的说明 14578541
捐赠科研通 4561487
什么是DOI,文献DOI怎么找? 2499302
邀请新用户注册赠送积分活动 1479225
关于科研通互助平台的介绍 1450469