计算机科学
人工智能
交叉口(航空)
情绪分析
特征提取
特征(语言学)
卷积(计算机科学)
编码器
边距(机器学习)
自然语言处理
比例(比率)
模式识别(心理学)
空格(标点符号)
机器学习
支持向量机
数据挖掘
特征向量
主题(文档)
可分离空间
代表(政治)
卷积神经网络
钥匙(锁)
财产(哲学)
推论
人工神经网络
词(群论)
统计分类
作者
Sarika Atul Patil,Gulab Dattrao Siraskar,Zarina Yusuf Shaikh,Vijaykumar Javanjal,Mahesh M. Sonekar
标识
DOI:10.1142/s0218488526500030
摘要
Sentiment classification involves analyzing text to determine emotional tone — positive, negative, or neutral. Challenges include interpreting context, managing diverse expressions, and handling language complexities, with existing models also struggling to scale to large text volumes. To address these issues, this research introduces the novel Text Separable attention selective subject Encoder Convolution network with Genghis Khan Shark Optimization (TSEC-GKSO) algorithm, which classifies features into sentiment categories and predicts ratings from one to five stars. The Adaptive Union Method (AUM) selects features by combining top-ranked features through union and applying intersection on remaining subsets, aiming to minimize feature space dimensions while retaining both top-ranked and common features. The TSEC-GKSO method achieved accuracies of 99.80% on RES14, 99.41% on RES15, and 99.54% on both Lap14 and IMDB datasets. It effectively addresses sentiment analysis challenges with accurate classification and efficient large dataset handling.
科研通智能强力驱动
Strongly Powered by AbleSci AI