普遍性(动力系统)
数学
奇点
有理函数
计算
符号计算
同种类的
期限(时间)
域代数上的
功能(生物学)
纯数学
解析函数
泰勒级数
生成函数
齐次函数
离散数学
应用数学
奇点理论
有理数
椭圆函数
部分分式分解
椭圆有理函数
作者
Yuliy Baryshnikov,Robin Pemantle
标识
DOI:10.1073/pnas.2525032122
摘要
We introduce computational methods for analytic combinatorics in several variables. Our findings pertain to rational generating functions whose dominant singularity satisfies either of two conditions, one of which frequently holds for recursions arising from cluster algebras. We show that the coefficients are determined asymptotically by the leading homogeneous term of the denominator of the function near the dominant singularity. Applying this to various statistical physical models, we show their asymptotic behavior to be given by elliptic and hyperelliptic integrals, computation of which is already implemented in computer algebra packages.
科研通智能强力驱动
Strongly Powered by AbleSci AI