阴极
法拉第效率
材料科学
尖晶石
相(物质)
化学物理
兴奋剂
结构稳定性
格子(音乐)
化学工程
工作(物理)
降级(电信)
理论(学习稳定性)
离子
化学稳定性
电化学
纳米技术
不稳定性
纳米晶
订单(交换)
晶格常数
作者
Weicheng Zhang,Jiajie Wu,Yu Shen,Yu Chao,Dehuan Shi,Kangwei Song,Zheyuan Liu,qian Wang,Ke Qu,Zhenzhong Yang,Chengkai Yang,Weicheng Zhang,Jiajie Wu,Yu Shen,Yu Chao,Dehuan Shi,Kangwei Song,Zheyuan Liu,qian Wang,Ke Qu
出处
期刊:Small
[Wiley]
日期:2025-11-14
标识
DOI:10.1002/smll.202510695
摘要
Abstract Nickel‐rich layered cathodes (e.g., LiNi 0 . 7 Co 0 . 1 Mn 0 . 2 O 2 ) suffer from interfacial degradation and bulk phase transitions, resulting in capacity fading and structural instability. Conventional doping (e.g., Al, Mg) stabilizes the lattice but often exacerbates cation disorder, while surface coatings (e.g., Al 2 O 3 , TiO 2 ) inhibit side reactions without suppressing bulk phase changes. Single‐crystal cathodes improve mechanical stability yet remain susceptible to surface degradation. Although integrated doping‐coating approaches (e.g., La 2 O 3 /La) show promise, they often rely on physical mixtures with limited atomic‐level control. Here, a multi‐tiered cation ordering strategy is reported through precisely designed interlayer (Ga 3 ⁺/Ni 2 ⁺/Li⁺/Ni 2 ⁺) and intralayer (Li⁺/Ga 3 ⁺) arrangements. This ordering suppresses Jahn–Teller distortion, spinel formation, and Li⁺/Ni 2 ⁺ antisite defects, while facilitating Li⁺ transport. The modified cathode exhibits an initial Coulombic efficiency of 94.5% and retains 80% capacity after 430 cycles, with high stability at 4.5 V and 50 °C. This work provides an atomic‐level ordering strategy for developing high‐energy‐density, long‐life batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI