纳米发生器
材料科学
电压
多物理
光电子学
压电
电流体力学
制作
图层(电子)
能量收集
电容感应
功率密度
功率(物理)
电气工程
电阻器
散热器(发动机冷却)
高压
脉冲功率
停留时间
阳极
纳米技术
脉冲宽度调制
电子工程
作者
Huifang Liu,Junjie Zhai,Zihao Liu,Jiaqi Wang,Huifang Liu,Junjie Zhai,Zihao Liu,Jiaqi Wang
标识
DOI:10.1002/admt.202501517
摘要
Abstract With the rapid growth of IoT technology, this study presents a novel piezoelectric–triboelectric hybrid nanogenerator (DPBL‐TENG) featuring a piezoelectric enhancement layer constructed as a grid‐like micro‐scale line array composed of poly(vinylidene fluoride)–barium titanate (PVDF–BaTiO 3 ) composites. The layer is fabricated using electrohydrodynamic (EHD) inkjet printing, with its deposition quality improved through systematic optimization of the driving voltage parameters. A multi‐physics coupling model in COMSOL Multiphysics is used to analyze jet behavior under DC and pulsed voltages, guiding voltage optimization. A one‐factor experimental design investigates how trapezoidal rise time, peak voltage dwell time, cutoff‐to‐peak voltage ratio, and pulse frequency influence microstructure formation. Uniform grid lines (≈120 µm wide) are successfully printed. Performance tests show that the DPBL‐TENG achieved an open‐circuit voltage of 211 V, which is 62% higher than that of a device without the piezoelectric layer and 12% higher than one with a thin‐film layer, and a maximum power density of 534 mW m − 2 . It powers 72 commercial LEDs directly and drives a thermometer through a capacitive energy storage circuit. This work offers a novel material system and fabrication approach for high‐performance hybrid nanogenerators, providing promising solutions for powering low‐energy devices in applications like environmental sensing.
科研通智能强力驱动
Strongly Powered by AbleSci AI