清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Clinical development of anticancer drugs can be enhanced using efficacy data of small population clinical trials

临床试验 医学 样本量测定 代理终结点 内科学 人口 临床终点 临床疗效 肿瘤科 数学 环境卫生 统计
作者
Keiichi Sawachi,Naoki Matsumaru,Katsura Tsukamoto
出处
期刊:Journal of Clinical Pharmacy and Therapeutics [Wiley]
卷期号:47 (9): 1388-1394
标识
DOI:10.1111/jcpt.13676
摘要

What Is Known and Objective Although there are accelerated approval pathways based on data of small populations and surrogate endpoints, the concern that these pathways authorize the use of inefficacious drugs based on limited data from earlier phase clinical trials remains. We retrospectively investigated the efficacy of anticancer drugs, which were approved or whose development was terminated in small and large clinical trials, and verified whether small clinical trials could reflect the results for efficacy in large clinical trials. Methods All anticancer drugs approved in Japan or whose development was terminated from 2015 to 2019 were searched. The median overall survival (OS), median progression-free survival (PFS), and overall response rates (ORR) between small clinical trials (sample size ≤100) and large clinical trials (sample size >100) with identical target populations and treatment settings were compared. Simple linear regression analysis, Spearman's correlation analysis, and paired sample t-test were performed. Results and Discussion A total of 61 comparable small and large clinical trials were identified. For all endpoints, statistically significant linear trends and correlation were detected (p < 0.001). There were no statistically significant differences in the median PFS and ORR between small and large clinical trials. The mean differences of both clinical trials were −0.102 months and −1.531%, respectively. What is new and Conclusion Even when the sample size of the clinical trial was increased, the efficacy data of anticancer drugs could not be changed significantly. These results supported the accelerated approval pathway based on the promising efficacy data of small populations in anticancer drug development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
电池菜鸟完成签到,获得积分20
1秒前
5秒前
电池菜鸟发布了新的文献求助10
6秒前
zjy发布了新的文献求助10
8秒前
华仔应助zjy采纳,获得10
16秒前
科研通AI2S应助定西采纳,获得10
28秒前
wang完成签到,获得积分0
31秒前
个性归尘应助科研通管家采纳,获得10
32秒前
个性归尘应助科研通管家采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
35秒前
mathmotive完成签到,获得积分10
51秒前
六一完成签到 ,获得积分10
52秒前
yzhilson完成签到 ,获得积分10
1分钟前
红箭烟雨完成签到,获得积分10
1分钟前
xdd完成签到 ,获得积分10
1分钟前
1分钟前
zjy完成签到,获得积分10
1分钟前
zjy发布了新的文献求助10
1分钟前
2分钟前
酷波er应助zjy采纳,获得10
2分钟前
Shandongdaxiu完成签到 ,获得积分10
2分钟前
个性归尘应助科研通管家采纳,获得10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
龙猫爱看书完成签到,获得积分10
2分钟前
科研通AI5应助孝顺的新之采纳,获得10
2分钟前
南汉高贵的陈皮完成签到 ,获得积分10
2分钟前
Air完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
bkagyin应助xun采纳,获得10
3分钟前
JrPaleo101完成签到,获得积分10
3分钟前
xun完成签到,获得积分20
4分钟前
4分钟前
xun发布了新的文献求助10
4分钟前
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379623
关于积分的说明 10509995
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707001
邀请新用户注册赠送积分活动 821368
科研通“疑难数据库(出版商)”最低求助积分说明 772597