阳离子聚合
材料科学
磷腈
水溶液
聚合物
肝素
高分子化学
化学工程
化学
有机化学
复合材料
生物化学
工程类
作者
Alexander Marin,Jordan Brito,Svetlana A. Sukhishvili,Alexander K. Andrianov
标识
DOI:10.1021/acsabm.1c01099
摘要
The development of state-of-the-art blood-contacting devices can be advanced through integrating hemocompatibility, durability, and anticoagulant functionalities within engineered nanoscale coatings. To enable all-aqueous assembly of nanocoatings combining omniphobic fluorinated features with the potent anticoagulant activity of hydrophilic heparin, two fluoropolymers containing cationic functionalities were synthesized─poly[(trifluoroethoxy)(dimethylaminopropyloxy)phosphazene], PFAP-O, and poly[(trifluoroethoxy)(dimethylaminopropylamino)phosphazene], PFAP-A. Despite a relatively high content of fluorinated pendant groups─approximately 50% (mol) in each─both polymers displayed solubility in aqueous solutions and were able to spontaneously form stable supramolecular complexes with heparin, as determined by dynamic light scattering and asymmetric flow field-flow fractionation methods. Heparin-containing coatings were then assembled by layer-by-layer deposition in aqueous solutions. Nanoassembled coatings were evaluated for potential thrombogenicity in three important categories of in vitro tests─coagulation by thrombin generation, platelet retention, and hemolysis. In all assays, heparin-containing fluoro-coatings consistently displayed superior performance compared to untreated titanium surfaces or fluoro-coatings assembled using poly(acrylic acid) in the absence of heparin. Short-term stability studies revealed the noneluting nature of these noncovalently assembled coatings.
科研通智能强力驱动
Strongly Powered by AbleSci AI