Distributed PINN for Linear Elasticity — A Unified Approach for Smooth, Singular, Compressible and Incompressible Media

有限元法 离散化 奇点 应用数学 维数之咒 不连续性分类 多物理 计算机科学 双调和方程 数学 数学优化 数学分析 边值问题 物理 人工智能 热力学
作者
Gaurav Yadav,Sundararajan Natarajan,B. Srinivasan
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:4
标识
DOI:10.1142/s0219876221420081
摘要

Over the last several decades, the Finite Element Method (FEM) has emerged as a numerical approach method of choice for the solution of problems in solid mechanics. Part of the reason for the success of FEM is that it provides a unified framework for discretizing even complex differential equations. However, despite this overall unification, FEM still requires specific variants or corrections depending on the problem at hand. For instance, problems with skewed meshes, discontinuity, singularity, incompressible media, etc. require the analyst to modify the discretization approach in order to preserve robustness. We speculate that local-polynomial bases such as those used in FEM do not sufficiently represent local physics and more “physics-informed” approaches may be more universal. Accordingly, in this paper, we evaluate the feasibility of one such approach — the recently developed Distributed Physics Informed Neural Network (DPINN) approach — to provide a truly unified framework for addressing problems in Solid Mechanics. The DPINN approach utilizes a piecewise-neural network representation for the underlying field, rather than the piece-polynomial representation that is common in FEM. We solve a series of problems in solid mechanics using either the single or domain-distributed version of DPINN and demonstrate that the approach is able to seamlessly solve varied problems with no special treatment required for volumetric locking or capturing discontinuities. Further, we also demonstrate that the DPINN approach, due to its meshless nature, is able to avoid the curse of dimensionality. We discuss the relative merits and demerits of the DPINN approach in comparison to FEM. We expect this work to be useful to researchers looking to develop unified computational frameworks for problems in solid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助happiness采纳,获得10
1秒前
1秒前
1秒前
2秒前
田様应助猫猫侠采纳,获得10
2秒前
2秒前
Jony发布了新的文献求助10
2秒前
lllin00发布了新的文献求助10
3秒前
qiaozhi乔治发布了新的文献求助10
3秒前
Jane完成签到,获得积分10
4秒前
sdfwsdfsd发布了新的文献求助10
4秒前
4秒前
花生酱发布了新的文献求助10
4秒前
窝窝头发布了新的文献求助10
5秒前
大模型应助lvshiwen采纳,获得30
5秒前
Murphy发布了新的文献求助10
5秒前
小猫三明治完成签到,获得积分10
6秒前
wyx完成签到,获得积分10
6秒前
十一发布了新的文献求助10
6秒前
怡晨思艺完成签到,获得积分10
7秒前
剑九黄完成签到,获得积分10
7秒前
桐桐应助maggie采纳,获得10
8秒前
ceo发布了新的文献求助10
8秒前
霁月完成签到,获得积分10
8秒前
qiaozhi乔治完成签到,获得积分10
9秒前
10秒前
乐乐应助糊涂的丹南采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
思源应助Pendulium采纳,获得10
11秒前
rose完成签到,获得积分10
11秒前
充电宝应助long采纳,获得10
12秒前
无花果应助Cc采纳,获得10
12秒前
lff完成签到,获得积分10
12秒前
李健的小迷弟应助霞霞采纳,获得10
13秒前
13秒前
14秒前
欣喜凡之发布了新的文献求助10
14秒前
今后应助喜悦百川采纳,获得10
14秒前
happiness发布了新的文献求助10
14秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639