Distributed PINN for Linear Elasticity — A Unified Approach for Smooth, Singular, Compressible and Incompressible Media

有限元法 离散化 奇点 应用数学 维数之咒 不连续性分类 多物理 计算机科学 双调和方程 数学 数学优化 数学分析 边值问题 物理 人工智能 热力学
作者
Gaurav Yadav,Sundararajan Natarajan,B. Srinivasan
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:4
标识
DOI:10.1142/s0219876221420081
摘要

Over the last several decades, the Finite Element Method (FEM) has emerged as a numerical approach method of choice for the solution of problems in solid mechanics. Part of the reason for the success of FEM is that it provides a unified framework for discretizing even complex differential equations. However, despite this overall unification, FEM still requires specific variants or corrections depending on the problem at hand. For instance, problems with skewed meshes, discontinuity, singularity, incompressible media, etc. require the analyst to modify the discretization approach in order to preserve robustness. We speculate that local-polynomial bases such as those used in FEM do not sufficiently represent local physics and more “physics-informed” approaches may be more universal. Accordingly, in this paper, we evaluate the feasibility of one such approach — the recently developed Distributed Physics Informed Neural Network (DPINN) approach — to provide a truly unified framework for addressing problems in Solid Mechanics. The DPINN approach utilizes a piecewise-neural network representation for the underlying field, rather than the piece-polynomial representation that is common in FEM. We solve a series of problems in solid mechanics using either the single or domain-distributed version of DPINN and demonstrate that the approach is able to seamlessly solve varied problems with no special treatment required for volumetric locking or capturing discontinuities. Further, we also demonstrate that the DPINN approach, due to its meshless nature, is able to avoid the curse of dimensionality. We discuss the relative merits and demerits of the DPINN approach in comparison to FEM. We expect this work to be useful to researchers looking to develop unified computational frameworks for problems in solid mechanics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC完成签到,获得积分0
1秒前
2秒前
邱邱完成签到,获得积分20
3秒前
思源应助Ailin采纳,获得10
3秒前
4秒前
今后应助魈maker采纳,获得10
4秒前
有魅力的念烟完成签到 ,获得积分10
4秒前
科研通AI5应助破晓采纳,获得10
4秒前
科研通AI2S应助xuyan采纳,获得10
7秒前
8秒前
莫一城发布了新的文献求助10
8秒前
水水完成签到,获得积分10
8秒前
8秒前
9秒前
老狗完成签到,获得积分10
10秒前
魏师完成签到,获得积分0
10秒前
11秒前
勇敢牛牛发布了新的文献求助30
12秒前
12秒前
青灿笑发布了新的文献求助10
12秒前
14秒前
morlison完成签到,获得积分10
14秒前
15秒前
沉静的煎蛋完成签到,获得积分10
15秒前
15秒前
土豆发布了新的文献求助10
16秒前
研友_VZG7GZ应助赫连紫采纳,获得10
16秒前
王浩宇发布了新的文献求助10
17秒前
青灿笑完成签到,获得积分20
18秒前
19秒前
hq完成签到,获得积分10
20秒前
蔡丽完成签到,获得积分20
20秒前
魈maker发布了新的文献求助10
20秒前
dfsdgyu完成签到,获得积分10
21秒前
隐形的笑白完成签到,获得积分10
21秒前
Amber完成签到,获得积分10
22秒前
haobuweiju完成签到 ,获得积分10
22秒前
菜菜发布了新的文献求助10
22秒前
勇敢牛牛完成签到,获得积分10
23秒前
crazy发布了新的文献求助10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777