RBECA: A regularized Bi-partitioned entropy component analysis for human face recognition

模式识别(心理学) 人工智能 熵(时间箭头) 数学 微分熵 特征向量 计算机科学 面部识别系统 主成分分析 核主成分分析 算法
作者
Arindam Kar,Debapriya Banik,Debotosh Bhattacharjee,Massimo Tistarelli
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:: 117273-117273
标识
DOI:10.1016/j.eswa.2022.117273
摘要

This paper presents a novel approach for Human Face Recognition, namely Regularized Bi-partitioned Entropy Component Analysis (RBECA). This conservative approach regularizes the kernel entropy components by deterring the noise and affecting the lower entropy regions area, making the method robust to noise. The kernel feature space, formed by the kernel entropy component analysis (KECA), is divided into two partitions: the High Entropy Space (HES) and the Low Entropy Space (LES). The noise-laden low entropy spectrum is regularized by predicting entropy values obtained from the information-filled High Entropy Spectrum. The corresponding projection vectors are adjusted accordingly. A null space, comprising the negligible information and many dimensions, is eliminated using a Golden Search minimization function at two stages. The method retains the maximum entropy property and high recognition accuracy while using the optimum number of features. This resultant feature vector is classified using the cosine similarity measure. The algorithm is successfully tested on several benchmark databases like AR, FERET, FRAV2D, and LFW, using standard protocols and compared with other competitive methods. The proposed method achieves much better recognition accuracy than other well-known methods like PCA, ICA, KPCA, KECA,LGBP, ERE, etc., in all considered cases. Moreover, we have also proposed a CNN for the comparative analysis. For unbiased or fair performance evaluation, the sensitivity and specificity are also reported. • A noise robust RBECA method is proposed for human face recognition. • The proposed method requires a lower number of features than KECA. • The highest level of discriminatory information is retained. • The algorithm is successfully trained and tested on several benchmark face databases. • A deep learning CNN framework is also implemented for comparative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kkt完成签到,获得积分10
1秒前
李爱国应助金金采纳,获得10
1秒前
kkt发布了新的文献求助10
3秒前
3秒前
所所应助ZhenyuLiu采纳,获得10
4秒前
99ldt发布了新的文献求助10
4秒前
赤木发布了新的文献求助10
4秒前
Ricochet发布了新的文献求助10
4秒前
5秒前
wsf2023发布了新的文献求助30
6秒前
6秒前
彭于彦祖应助dy采纳,获得20
7秒前
wqc2060发布了新的文献求助10
8秒前
8秒前
Ricochet完成签到,获得积分10
9秒前
科研通AI5应助武勇采纳,获得30
10秒前
12秒前
sanjin发布了新的文献求助10
12秒前
99ldt完成签到,获得积分20
14秒前
数据线发布了新的文献求助10
15秒前
细心枫叶发布了新的文献求助10
16秒前
怕孤独的自行车完成签到,获得积分10
16秒前
默默白开水完成签到 ,获得积分10
17秒前
17秒前
可靠的青发布了新的文献求助10
18秒前
20秒前
沐晨浠完成签到,获得积分10
23秒前
东华帝君完成签到,获得积分10
23秒前
23秒前
彭于晏应助牧童采纳,获得10
24秒前
可靠的青完成签到,获得积分10
24秒前
景雪航发布了新的文献求助10
25秒前
25秒前
毛脸雷公嘴完成签到,获得积分10
28秒前
28秒前
hj发布了新的文献求助10
29秒前
Ava应助细心枫叶采纳,获得10
29秒前
30秒前
含糊的凤灵完成签到,获得积分10
31秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123