Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region

材料科学 纳米复合材料 电介质 复合材料 聚合物纳米复合材料 氧化物 肖特基势垒 电极 介电强度 聚合物 石墨烯 纳米技术 带隙 光电子学 物理化学 冶金 化学 二极管
作者
Jiufeng Dong,Renchao Hu,Yujuan Niu,Liang Sun,Liuting Li,Shuai Li,Desheng Pan,Xinwei Xu,Rui Gong,Jin Cheng,Zizhao Pan,Qing Wang,Hong Wang
出处
期刊:Nano Energy [Elsevier BV]
卷期号:99: 107314-107314 被引量:91
标识
DOI:10.1016/j.nanoen.2022.107314
摘要

The interface plays a major role in the conduction and breakdown behaviors of dielectric materials. Enhancing interface compatibility and Schottky barrier to reduce conduction loss and enhance breakdown strength of nanocomposites has been widely studied. Nevertheless, there are few reports on the effect of the energy level structure in filler/polymer and electrode/dielectric interface region on the breakdown strength and high-temperature energy storage performances. Herein, the polyimide (PI) films sandwiched by Al 2 O 3 layers and filled with SiO 2 shell-coated high- K BaTiO 3 nanofibers were prepared. Our results reveal that the wide bandgap oxide layer can regulate the energy level structure of the interface region, introduce deep traps in the nanocomposites and increase the Schottky barrier at the electrode/dielectric interface to impede charge injection and transport. Moreover, the nanocomposites combine the advantages of anisotropic dielectric properties from the Al 2 O 3 layer, SiO 2 shell, and BaTiO 3 core, enhancing dielectric constants of the nanocomposites. The optimal nanocomposites show greatly enhanced discharge energy density and breakdown strength at 150 °C, which are 370% and 38% higher than those of PI, respectively. This work provides more insight into the mechanism of electrical conduction and breakdown in polymer nanocomposites and offers an effective strategy for developing polymer nanocomposites with superior capacitive performance at elevated temperatures. A novel polymer nanocomposite sandwiched by wide bandgap oxide layer and filled with high- K BaTiO 3 nanofibers coated with a wide bandgap oxide shell is reported. The trap energy level and interface Schottky barrier were greatly improved by adjusting the band structure in the micro-/meso-scopic interface region of the nanocomposites, yielding concurrent enhancements in both dielectric constant and breakdown strength at elevated temperatures. • Preparing a novel high- K nanocomposites with multi-scale interfaces. • Overcoming the negative correlation between K and E b of nanocomposites. • Revealing the band structure effect of interface region on the dielectric properties. • The U e of the optimal nanocomposites is kept at 1.75 J cm −3 with η > 90% at 200 °C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助震动的曲奇采纳,获得10
1秒前
赵雨轩完成签到 ,获得积分10
3秒前
能干太清完成签到,获得积分10
4秒前
aaaa发布了新的文献求助10
5秒前
6秒前
挽风风风风完成签到,获得积分10
9秒前
研友_VZG7GZ应助杨伊森采纳,获得10
10秒前
10秒前
w王w发布了新的文献求助10
10秒前
涵泽发布了新的文献求助10
11秒前
阳光的蜜蜂啊完成签到,获得积分20
11秒前
子明完成签到 ,获得积分10
11秒前
13秒前
13秒前
14秒前
远志发布了新的文献求助10
16秒前
17完成签到 ,获得积分10
17秒前
杨杨杨完成签到,获得积分10
17秒前
18秒前
李健应助阳光的蜜蜂啊采纳,获得10
18秒前
zijinbeier完成签到,获得积分10
19秒前
冰山未闯完成签到,获得积分10
20秒前
edtaa完成签到 ,获得积分10
20秒前
斯寜应助人间月色采纳,获得20
21秒前
我是催化剂完成签到,获得积分20
22秒前
chezi发布了新的文献求助30
23秒前
薛定谔的小猴子完成签到,获得积分10
23秒前
科研通AI5应助ZBY采纳,获得10
24秒前
李健应助丰富不惜采纳,获得10
24秒前
Lensin完成签到 ,获得积分10
25秒前
QQ完成签到 ,获得积分10
26秒前
26秒前
27秒前
王先生发布了新的文献求助30
28秒前
29秒前
Darwin完成签到 ,获得积分10
30秒前
活力的听露完成签到 ,获得积分10
31秒前
KBRS完成签到,获得积分10
31秒前
二汀发布了新的文献求助10
31秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843