Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution

软骨 可解释性 骨关节炎 膝关节软骨 磁共振成像 计算机科学 卷积神经网络 人工智能 图形 模式识别(心理学) 生物医学工程 医学 解剖 病理 放射科 关节软骨 理论计算机科学 替代医学
作者
Zixu Zhuang,Liping Si,Sheng Wang,Kai Xuan,Xi Ouyang,Yiqiang Zhan,Zhong Xue,Lichi Zhang,Dinggang Shen,Weiwu Yao,Qian Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (2): 368-379 被引量:7
标识
DOI:10.1109/tmi.2022.3206042
摘要

Knee osteoarthritis (OA) is the most common osteoarthritis and a leading cause of disability. Cartilage defects are regarded as major manifestations of knee OA, which are visible by magnetic resonance imaging (MRI). Thus early detection and assessment for knee cartilage defects are important for protecting patients from knee OA. In this way, many attempts have been made on knee cartilage defect assessment by applying convolutional neural networks (CNNs) to knee MRI. However, the physiologic characteristics of the cartilage may hinder such efforts: the cartilage is a thin curved layer, implying that only a small portion of voxels in knee MRI can contribute to the cartilage defect assessment; heterogeneous scanning protocols further challenge the feasibility of the CNNs in clinical practice; the CNN-based knee cartilage evaluation results lack interpretability. To address these challenges, we model the cartilages structure and appearance from knee MRI into a graph representation, which is capable of handling highly diverse clinical data. Then, guided by the cartilage graph representation, we design a non-Euclidean deep learning network with the self-attention mechanism, to extract cartilage features in the local and global, and to derive the final assessment with a visualized result. Our comprehensive experiments show that the proposed method yields superior performance in knee cartilage defect assessment, plus its convenient 3D visualization for interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小广完成签到,获得积分10
1秒前
5114完成签到,获得积分10
1秒前
一一应助eurus采纳,获得10
2秒前
木木发布了新的文献求助10
2秒前
DK_fish发布了新的文献求助10
3秒前
3秒前
wwww完成签到 ,获得积分10
7秒前
共享精神应助钟山采纳,获得10
7秒前
麦豆腐德完成签到,获得积分10
7秒前
9秒前
自由的水绿完成签到 ,获得积分10
9秒前
zzx完成签到,获得积分10
9秒前
个性百川关注了科研通微信公众号
10秒前
科研通AI2S应助麦豆腐德采纳,获得10
11秒前
隐形曼青应助狂野谷冬采纳,获得10
16秒前
17秒前
热心的珍发布了新的文献求助10
21秒前
07734完成签到,获得积分10
22秒前
zhaoshao完成签到,获得积分10
23秒前
bkagyin应助lin采纳,获得10
23秒前
星辰大海应助苏雅霏采纳,获得10
23秒前
Gauss应助赵懂采纳,获得10
24秒前
24秒前
26秒前
斯文的青枫完成签到,获得积分10
28秒前
XD发布了新的文献求助10
29秒前
狂野谷冬发布了新的文献求助10
30秒前
30秒前
31秒前
TXG完成签到 ,获得积分10
31秒前
33秒前
陈陈陈完成签到,获得积分20
35秒前
35秒前
科研狗完成签到,获得积分10
35秒前
36秒前
XD完成签到,获得积分10
37秒前
陈陈陈发布了新的文献求助10
37秒前
戴衡霞完成签到,获得积分10
41秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801436
求助须知:如何正确求助?哪些是违规求助? 3347178
关于积分的说明 10332279
捐赠科研通 3063465
什么是DOI,文献DOI怎么找? 1681729
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763852