Learning Design Rules for Selective Oxidation Catalysts from High-Throughput Experimentation and Artificial Intelligence

催化作用 电负性 反应性(心理学) 化学 丙烯醛 化学工程 有机化学 医学 病理 替代医学 工程类
作者
Lucas Foppa,Christopher Sutton,Luca M. Ghiringhelli,Sandip De,Patricia Löser,Stephan A. Schunk,Ansgar Schäfer,Matthias Scheffler
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:12 (4): 2223-2232 被引量:50
标识
DOI:10.1021/acscatal.1c04793
摘要

The design of heterogeneous catalysts is challenged by the complexity of materials and processes that govern reactivity and by the fact that the number of good catalysts is very small in comparison to the number of possible materials. Here, we show how the subgroup-discovery (SGD) artificial-intelligence approach can be applied to an experimental plus theoretical data set to identify constraints on key physicochemical parameters, the so-called SG rules, which exclusively describe materials and reaction conditions with outstanding catalytic performance. By using high-throughput experimentation, 120 SiO2-supported catalysts containing ruthenium, tungsten, and phosphorus were synthesized and tested in the catalytic oxidation of propylene. As candidate descriptive parameters, the temperature and 10 parameters related to the composition and chemical nature of the catalyst materials, derived from calculated free-atom properties, were offered. The temperature, the phosphorus content, and the composition-weighted electronegativity are identified as key parameters describing high yields toward the value-added oxygenate products acrolein and acrylic acid. The SG rules not only reflect the underlying processes particularly associated with high performance but also guide the design of more complex catalysts containing up to five elements in their composition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不安的小刺猬完成签到,获得积分10
刚刚
斿斿完成签到 ,获得积分10
1秒前
打打应助逆风采纳,获得10
3秒前
3秒前
SciGPT应助金屋藏娇采纳,获得10
6秒前
7秒前
8秒前
英姑应助Liangang采纳,获得10
9秒前
linlin完成签到,获得积分10
10秒前
12秒前
16秒前
爆米花应助科研通管家采纳,获得10
22秒前
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
华仔应助科研通管家采纳,获得10
22秒前
小新应助科研通管家采纳,获得10
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
unqiue应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
小新应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
的y应助科研通管家采纳,获得10
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
unqiue应助科研通管家采纳,获得10
23秒前
kingwill应助科研通管家采纳,获得20
23秒前
24秒前
26秒前
耶椰发布了新的文献求助10
28秒前
28秒前
lykxc完成签到,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566