Evaluation of the Design of “Shape” and “Meaning” of Book Binding from the Perspective of Deep Learning

计算机科学 人工智能 集合(抽象数据类型) 透视图(图形) 特征(语言学) 核(代数) 深度学习 意义(存在) 机器学习 模式识别(心理学) 算法 数学 语言学 心理学 哲学 组合数学 心理治疗师 程序设计语言
作者
Xiujuan Wu,Zhiduan Cai
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-7 被引量:1
标识
DOI:10.1155/2022/1314362
摘要

Book binding is the procedure of manually accumulating a book in codex format from a well-ordered pile of paper sheets, which are folded together into sections or occasionally left as a stack of individual sheets. The books undergo binding into different shapes and sizes. Numerous kinds of book bindings are available, each of which comes with its own merits and demerits. Some of them are highly durable, some of them are light-weight, and some of them are attractive. Therefore, it is needed to effectively identify and classify the shape and type of book bindings. With this motivation, this paper develops a butterfly optimization algorithm with a deep learning-enabled book binding classification (BOADL-BBC) model. The major intention of the BOADL-BBC technique is to identify and categorise three different types of book bindings from the input images, namely, hard binding, soft binding, and long-stitch binding. The proposed BOADL-BBC technique initially employs a DL-based Inception v3 model to derive useful feature vectors from the images. For effective classification of book bindings, the BOA with wavelet kernel extreme learning machine (WKELM) model can be applied. The weight and bias values involved in the WKELM model can be effectively adjusted by the use of BOA for book binding classification shows the novelty of the work. To ensure the enhanced performance of the BOADL-BBC technique, a series of simulations were carried out using a set of images that people collected on their own. The experimental results stated that the BOADL-BBC technique has obtained a maximum book binding classification accuracy of 95.56%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙振亚发布了新的文献求助10
1秒前
1秒前
大淘发布了新的文献求助10
2秒前
小马甲应助迅速的八宝粥采纳,获得10
3秒前
无限达完成签到,获得积分10
3秒前
4秒前
李喜喜发布了新的文献求助10
5秒前
KKIII发布了新的文献求助10
9秒前
shusen完成签到,获得积分10
10秒前
在水一方应助李喜喜采纳,获得10
11秒前
所所应助lei采纳,获得10
13秒前
思源应助丝竹丛中墨未干采纳,获得20
16秒前
16秒前
16秒前
kyt驳回了情怀应助
16秒前
LynnQiu发布了新的文献求助10
19秒前
20秒前
苹果追命完成签到,获得积分10
20秒前
大淘完成签到,获得积分10
21秒前
shelemi发布了新的文献求助10
21秒前
24秒前
cfffff完成签到,获得积分10
27秒前
黄凯发布了新的文献求助150
31秒前
33秒前
202483067完成签到 ,获得积分10
33秒前
leoMessi发布了新的文献求助10
34秒前
小蘑菇应助迅速的八宝粥采纳,获得10
36秒前
Lau完成签到,获得积分10
38秒前
搜集达人应助慎ming采纳,获得80
38秒前
深情安青应助猩心采纳,获得10
39秒前
doDo完成签到 ,获得积分10
40秒前
shelemi发布了新的文献求助10
40秒前
科研通AI5应助俞璐采纳,获得10
40秒前
41秒前
七七完成签到,获得积分10
42秒前
43秒前
43秒前
肚皮完成签到 ,获得积分10
44秒前
44秒前
LT发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669