人工光合作用
化学
脱氢
光催化
光化学
单线态氧
催化作用
光合作用
制氢
电子转移
组合化学
氧气
有机化学
生物化学
作者
M. Pfeffer,Carolin Müller,Evelyn T. E. Kastl,Alexander K. Mengele,Benedikt Bagemihl,Sven Fauth,Johannes Habermehl,Lydia Petermann,Maria Wächtler,Martin Schulz,Daniel Chartrand,François Laverdière,Phillip Seeber,Stephan Kupfer,Stefanie Gräfe,Garry S. Hanan,Johannes G. Vos,Benjamin Dietzek‐Ivanšić,Sven Rau
出处
期刊:Nature Chemistry
[Nature Portfolio]
日期:2022-02-07
卷期号:14 (5): 500-506
被引量:52
标识
DOI:10.1038/s41557-021-00860-6
摘要
The molecular apparatus behind biological photosynthesis retains its long-term functionality through enzymatic repair. However, bioinspired molecular devices designed for artificial photosynthesis, consisting of a photocentre, a bridging ligand and a catalytic centre, can become unstable and break down when their individual modules are structurally compromised, halting their overall functionality and operation. Here we report the active repair of such an artificial photosynthetic molecular device, leading to complete recovery of catalytic activity. We have identified the hydrogenation of the bridging ligand, which inhibits the light-driven electron transfer between the photocentre and catalytic centre, as the deactivation mechanism. As a means of repair, we used the light-driven generation of singlet oxygen, catalysed by the photocentre, to enable the oxidative dehydrogenation of the bridging unit, which leads to the restoration of photocatalytic hydrogen formation.
科研通智能强力驱动
Strongly Powered by AbleSci AI