亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune checkpoint inhibitors in stage IV non-small cell lung cancer patients: A multicenter, prognostic study

医学 肺癌 阶段(地层学) 肿瘤科 内科学 放射科 生物 古生物学
作者
Kan Deng,Lu Wang,Yuchan Liu,Xin Li,Qiuyang Hou,Mulan Cao,Nathan Ng,Huan Wang,Huanhuan Chen,Kristen W. Yeom,Mingfang Zhao,Ning Wu,Peng Gao,Jingyun Shi,Zaiyi Liu,Weimin Liu,Jie Tian,Jiangdian Song
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:51: 101541-101541 被引量:6
标识
DOI:10.1016/j.eclinm.2022.101541
摘要

For clinical decision making, it is crucial to identify patients with stage IV non-small cell lung cancer (NSCLC) who may benefit from tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). In this study, a deep learning-based system was designed and validated using pre-therapy computed tomography (CT) images to predict the survival benefits of EGFR-TKIs and ICIs in stage IV NSCLC patients.This retrospective study collected data from 570 patients with stage IV EGFR-mutant NSCLC treated with EGFR-TKIs at five institutions between 2010 and 2021 (data of 314 patients were from a previously registered study), and 129 patients with stage IV NSCLC treated with ICIs at three institutions between 2017 and 2021 to build the ICI test dataset. Five-fold cross-validation was applied to divide the EGFR-TKI-treated patients from four institutions into training and internal validation datasets randomly in a ratio of 80%:20%, and the data from another institution was used as an external test dataset. An EfficientNetV2-based survival benefit prognosis (ESBP) system was developed with pre-therapy CT images as the input and the probability score as the output to identify which patients would receive additional survival benefit longer than the median PFS. Its prognostic performance was validated on the ICI test dataset. For diagnosing which patient would receive additional survival benefit, the accuracy of ESBP was compared with the estimations of three radiologists and three oncologists with varying degrees of expertise (two, five, and ten years). Improvements in the clinicians' diagnostic accuracy with ESBP assistance were then quantified.ESBP achieved positive predictive values of 80·40%, 75·40%, and 77·43% for additional EGFR-TKI survival benefit prediction using the probability score of 0·2 as the threshold on the training, internal validation, and external test datasets, respectively. The higher ESBP score (>0·2) indicated a better prognosis for progression-free survival (hazard ratio: 0·36, 95% CI: 0·19-0·68, p<0·0001) in patients on the external test dataset. Patients with scores >0·2 in the ICI test dataset also showed better survival benefit (hazard ratio: 0·33, 95% CI: 0·18-0·55, p<0·0001). This suggests the potential of ESBP to identify the two subgroups of benefiting patients by decoding the commonalities from pre-therapy CT images (stage IV EGFR-mutant NSCLC patients receiving additional survival benefit from EGFR-TKIs and stage IV NSCLC patients receiving additional survival benefit from ICIs). ESBP assistance improved the diagnostic accuracy of the clinicians with two years of experience from 47·91% to 66·32%, and the clinicians with five years of experience from 53·12% to 61·41%.This study developed and externally validated a preoperative CT image-based deep learning model to predict the survival benefits of EGFR-TKI and ICI therapies in stage IV NSCLC patients, which will facilitate optimized and individualized treatment strategies.This study received funding from the National Natural Science Foundation of China (82001904, 81930053, and 62027901), and Key-Area Research and Development Program of Guangdong Province (2021B0101420005).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
香蕉觅云应助科研通管家采纳,获得10
23秒前
31秒前
山橘月发布了新的文献求助10
37秒前
星期五完成签到 ,获得积分10
2分钟前
冉亦完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
小马甲应助NN采纳,获得30
3分钟前
机智的雁风完成签到,获得积分20
3分钟前
3分钟前
3分钟前
NN发布了新的文献求助30
3分钟前
山橘月发布了新的文献求助10
3分钟前
NN完成签到,获得积分20
3分钟前
天天开心完成签到 ,获得积分10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
橙子完成签到,获得积分10
4分钟前
橙子发布了新的文献求助10
4分钟前
柚子完成签到 ,获得积分10
4分钟前
柯一一应助橙子采纳,获得10
4分钟前
科研通AI5应助橙子采纳,获得10
4分钟前
科研通AI5应助橙子采纳,获得10
4分钟前
科研通AI5应助橙子采纳,获得10
4分钟前
科研通AI5应助橙子采纳,获得10
4分钟前
Delire完成签到,获得积分10
4分钟前
领导范儿应助hqc采纳,获得10
4分钟前
5分钟前
hqc发布了新的文献求助10
5分钟前
nhh发布了新的文献求助20
5分钟前
Lain完成签到,获得积分10
6分钟前
喔喔佳佳L完成签到 ,获得积分10
6分钟前
7分钟前
Owllight发布了新的文献求助10
7分钟前
Owllight完成签到,获得积分20
7分钟前
George完成签到,获得积分10
7分钟前
汉堡包应助hqc采纳,获得10
7分钟前
8分钟前
hqc发布了新的文献求助10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330056
关于积分的说明 10244192
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759508