Ureteral calculi lithotripsy for single ureteral calculi: can DNN-assisted model help preoperatively predict risk factors for sepsis?

医学 经皮肾镜取石术 败血症 过度拟合 放射科 神经组阅片室 倾向得分匹配 外科 回顾性队列研究 经皮 人工神经网络 人工智能 神经学 计算机科学 精神科
作者
Mingzhen Chen,Jiannan Yang,Junlin Lu,Ziling Zhou,Kun Huang,Si-Han Zhang,Guanjie Yuan,Qingpeng Zhang,Zhen Li
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (12): 8540-8549 被引量:11
标识
DOI:10.1007/s00330-022-08882-5
摘要

To explore the utility of radiomics and deep learning model in assessing the risk factors for sepsis after flexible ureteroscopy lithotripsy (FURL) or percutaneous nephrolithotomy (PCNL) in patients with ureteral calculi.This retrospective analysis included 847 patients with treatment-naive proximal ureteral calculi who received FURL or PCNL. All participants were preoperatively conducted non-contrast computed tomography scans, and relevant clinical information was meanwhile collected. After propensity score matching, the radiomics model was established to predict the onset of sepsis. A deep learning model was also adapted to further improve the prediction accuracy. Performance of these trained models was verified in another independent external validation set including 40 cases of ureteral calculi patients.The overall incidence of sepsis after FURL or PCNL was 5.9%. The least absolute shrinkage and selection operator (LASSO) regression analysis revealed 26 predictive variables, with an overall AUC of 0.881 (95% CI, 0.813-0.931) and an AUC of 0.783 (95% CI, 0.766-0.801) in external validation cohort. Judicious adaption of a deep neural network (DNN) model to our dataset improved the AUC to 0.920 (95% CI, 0.906-0.933) in the internal validation. To eliminate the overfitting, external validation was carried out for DNN model (AUC = 0.874 (95% CI, 0.858-0.891)).The DNN was more effective than the LASSO model in revealing risk factors for sepsis after FURL or PCNL in single ureteral calculi patients, and females are more susceptible to sepsis than males. Deep learning models have the potential to act as gatekeepers to facilitate patient stratification.• Both the least absolute shrinkage and selection operator (LASSO) and deep neural network (DNN) models were shown to be effective in sepsis prediction. • The DNN model achieved superior prediction capability, with an AUC of 0.920 (95% CI, 0.906-0.933). • DNN-assisted model has potential to serve as a gatekeeper to facilitate patient stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的复天完成签到,获得积分10
刚刚
淋湿巴黎发布了新的文献求助10
刚刚
刚刚
ygr完成签到,获得积分0
1秒前
yyyyyge完成签到,获得积分10
2秒前
ZhouYW应助威武冷雪采纳,获得10
2秒前
Ilyas0525完成签到,获得积分10
2秒前
小马驹发布了新的文献求助10
2秒前
平淡冬亦完成签到 ,获得积分10
3秒前
苹果萧完成签到 ,获得积分10
3秒前
Yonina完成签到,获得积分10
3秒前
封似狮完成签到,获得积分10
3秒前
Darsine完成签到,获得积分10
4秒前
4秒前
友好凌柏完成签到 ,获得积分10
4秒前
LM完成签到,获得积分10
4秒前
Dreamer0422完成签到,获得积分10
4秒前
4秒前
tfr06完成签到,获得积分10
6秒前
júpiter完成签到,获得积分10
6秒前
DZQ完成签到,获得积分10
6秒前
英勇凝旋完成签到,获得积分10
6秒前
打打应助半颗橙子采纳,获得10
7秒前
cff完成签到 ,获得积分10
7秒前
充电宝应助淋湿巴黎采纳,获得10
7秒前
南栀完成签到,获得积分10
7秒前
猴子完成签到,获得积分10
7秒前
9秒前
彪壮的幻丝完成签到 ,获得积分10
9秒前
微笑的水桃完成签到 ,获得积分10
9秒前
bkagyin应助phwibalki采纳,获得10
9秒前
朴实海亦完成签到,获得积分10
9秒前
小布丁发布了新的文献求助10
10秒前
Zooey旎旎完成签到,获得积分10
10秒前
lemon完成签到,获得积分10
10秒前
853225598完成签到,获得积分10
11秒前
yyy完成签到,获得积分10
11秒前
Anyemzl完成签到,获得积分10
12秒前
绵绵球完成签到,获得积分0
12秒前
建丰完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795646
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301472
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677590
邀请新用户注册赠送积分活动 805503
科研通“疑难数据库(出版商)”最低求助积分说明 762642