Complementary deep learning and chemometrics: A case of pear fruit centroid detection and spectral model application for fruit spectral image processing

质心 人工智能 化学计量学 模式识别(心理学) 像素 数学 深度学习 计算机科学 机器学习 万维网
作者
Junli Xu,Puneet Mishra
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:192: 112013-112013 被引量:4
标识
DOI:10.1016/j.postharvbio.2022.112013
摘要

A novel case of combining deep learning and chemometrics for spectral image processing is presented. The case involved the application of deep transfer learning for detecting and locating the fruit centroid to extract pixels for spectral model development and application. The selected fruit case involved a non-symmetrical fruit pear where the interesting area for spectral model application is not the centroid of the whole fruit unlike fruit such as apples but the centroid of the belly part of the pear fruit. Hence, the task of object detection is replaced with the task of symmetrical region (fruit belly) detection on the pear fruit such that the spectral model can be applied in the centroid pixels of the symmetrical region. For spectral modelling, the latent variables based regression technique called partial least-square (PLS) regression was used. For spectral modelling, PLS was preferred over deep learning as there was a low number of samples points to train a deep spectral model. The deep transfer learning allowed 100 % correct detection of the pear fruit belly part with the intersection over union score of 0.82. Furthermore, the RMSEP = 0.77 % was attained with the PLS modelling to predict dry matter. The presented approach can support the wide application of spectral imaging for fresh fruit analysis, particularly when imaging is performed simultaneously on multiple objects and the objects are non-symmetrical in shape.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
真金小子完成签到 ,获得积分10
1秒前
完美世界应助稳重奇异果采纳,获得10
2秒前
王誓言发布了新的文献求助10
2秒前
Marjorie发布了新的文献求助10
2秒前
3秒前
陈晓迪1992完成签到,获得积分10
4秒前
LazyClouds发布了新的文献求助10
4秒前
卷心菜完成签到,获得积分10
4秒前
捉一只小鱼完成签到 ,获得积分10
5秒前
激情的凌青完成签到 ,获得积分10
5秒前
26347完成签到 ,获得积分10
5秒前
jessie发布了新的文献求助20
6秒前
6秒前
6秒前
6秒前
越红完成签到,获得积分10
7秒前
zzy完成签到,获得积分20
7秒前
wws完成签到 ,获得积分10
9秒前
topsun发布了新的文献求助10
9秒前
10秒前
超级无心完成签到,获得积分10
10秒前
风中觅夏完成签到 ,获得积分10
11秒前
chenc完成签到,获得积分10
11秒前
小夏完成签到,获得积分10
11秒前
英勇画板发布了新的文献求助10
11秒前
12秒前
afterly发布了新的文献求助10
12秒前
12秒前
12秒前
baobao发布了新的文献求助10
13秒前
快乐小狗发布了新的文献求助10
13秒前
深情安青应助缓慢听安采纳,获得10
14秒前
粉面菜蛋完成签到,获得积分10
14秒前
brd发布了新的文献求助10
14秒前
super chan完成签到,获得积分10
15秒前
zzy发布了新的文献求助10
15秒前
苏素发布了新的文献求助10
15秒前
木木应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792875
求助须知:如何正确求助?哪些是违规求助? 3337413
关于积分的说明 10285064
捐赠科研通 3054136
什么是DOI,文献DOI怎么找? 1675825
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561