Individual Tree Crown Segmentation and Crown Width Extraction From a Heightmap Derived From Aerial Laser Scanning Data Using a Deep Learning Framework

激光雷达 计算机科学 分割 树(集合论) 人工智能 深度学习 遥感 牙冠(牙科) 模式识别(心理学) 数学 地理 医学 数学分析 牙科
作者
Chenxin Sun,Chengwei Huang,Huaiqing Zhang,Bangqian Chen,Feng An,Liwen Wang,Ting Yun
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:13 被引量:65
标识
DOI:10.3389/fpls.2022.914974
摘要

Deriving individual tree crown (ITC) information from light detection and ranging (LiDAR) data is of great significance to forest resource assessment and smart management. After proof-of-concept studies, advanced deep learning methods have been shown to have high efficiency and accuracy in remote sensing data analysis and geoscience problem solving. This study proposes a novel concept for synergetic use of the YOLO-v4 deep learning network based on heightmaps directly generated from airborne LiDAR data for ITC segmentation and a computer graphics algorithm for refinement of the segmentation results involving overlapping tree crowns. This concept overcomes the limitations experienced by existing ITC segmentation methods that use aerial photographs to obtain texture and crown appearance information and commonly encounter interference due to heterogeneous solar illumination intensities or interlacing branches and leaves. Three generative adversarial networks (WGAN, CycleGAN, and SinGAN) were employed to generate synthetic images. These images were coupled with manually labeled training samples to train the network. Three forest plots, namely, a tree nursery, forest landscape and mixed tree plantation, were used to verify the effectiveness of our approach. The results showed that the overall recall of our method for detecting ITCs in the three forest plot types reached 83.6%, with an overall precision of 81.4%. Compared with reference field measurement data, the coefficient of determination
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
久桃完成签到,获得积分10
2秒前
付付完成签到 ,获得积分10
2秒前
3秒前
www发布了新的文献求助10
3秒前
croco发布了新的文献求助10
5秒前
6秒前
7秒前
8秒前
孙燕应助ttttt采纳,获得100
8秒前
尔雅完成签到,获得积分10
8秒前
jgy完成签到 ,获得积分10
9秒前
纯真醉波完成签到 ,获得积分10
9秒前
9秒前
斯文败类应助平常芷波采纳,获得10
10秒前
croco完成签到,获得积分10
11秒前
唠嗑在呐发布了新的文献求助10
12秒前
循环发布了新的文献求助10
13秒前
虔三愿完成签到,获得积分10
13秒前
14秒前
15秒前
www完成签到,获得积分10
15秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
所所应助sxy采纳,获得10
18秒前
20秒前
李健应助年轻的咖啡豆采纳,获得10
21秒前
基德来滚关注了科研通微信公众号
21秒前
丘比特应助循环采纳,获得10
21秒前
21秒前
21秒前
qianqiu完成签到 ,获得积分10
22秒前
23秒前
23秒前
吱哦周发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
27秒前
循环完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870888
求助须知:如何正确求助?哪些是违规求助? 3412930
关于积分的说明 10682384
捐赠科研通 3137478
什么是DOI,文献DOI怎么找? 1730944
邀请新用户注册赠送积分活动 834519
科研通“疑难数据库(出版商)”最低求助积分说明 781191