催化作用
化学
氧化物
水溶液
二氧化碳电化学还原
密度泛函理论
吸附
选择性
二氧化碳
无机化学
八面体
物理化学
一氧化碳
结晶学
计算化学
有机化学
晶体结构
作者
Piaoping Yang,Zhi‐Jian Zhao,Xiaoxia Chang,Rentao Mu,Shenjun Zha,Gong Zhang,Jinlong Gong
标识
DOI:10.1002/ange.201801463
摘要
Abstract Carbon dioxide (CO 2 ) reduction in aqueous solutions is an attractive strategy for carbon capture and utilization. Cuprous oxide (Cu 2 O) is a promising catalyst for CO 2 reduction as it can convert CO 2 into valuable hydrocarbons and suppress the side hydrogen evolution reaction (HER). However, the nature of the active sites in Cu 2 O remains under debate because of the complex surface structure of Cu 2 O under reducing conditions, leading to limited guidance in designing improved Cu 2 O catalysts. This paper describes the functionality of surface‐bonded hydroxy groups on partially reduced Cu 2 O(111) for the CO 2 reduction reaction (CO 2 RR) by combined density functional theory (DFT) calculations and experimental studies. We find that the surface hydroxy groups play a crucial role in the CO 2 RR and HER, and a moderate coverage of hydroxy groups is optimal for promotion of the CO 2 RR and suppression of the HER simultaneously. Electronic structure analysis indicates that the charge transfer from hydroxy groups to coordination‐unsaturated Cu (Cu CUS ) sites stabilizes surface‐adsorbed COOH*, which is a key intermediate during the CO 2 RR. Moreover, the CO 2 RR was evaluated over Cu 2 O octahedral catalysts with {111} facets and different surface coverages of hydroxy groups, which demonstrates that Cu 2 O octahedra with moderate coverage of hydroxy groups can indeed enhance the CO 2 RR and suppress the HER.
科研通智能强力驱动
Strongly Powered by AbleSci AI