Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation

计算机科学 增采样 人工智能 分割 变压器 编码器 卷积神经网络 嵌入 模式识别(心理学) 计算机视觉 图像(数学) 量子力学 操作系统 物理 电压
作者
Xin He,Yong Zhou,Jiaqi Zhao,Di Zhang,Rui Yao,Yong Xue
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:419
标识
DOI:10.1109/tgrs.2022.3144165
摘要

Global context information is essential for the semantic segmentation of remote sensing (RS) images. However, most existing methods rely on a convolutional neural network (CNN), which is challenging to directly obtain the global context due to the locality of the convolution operation. Inspired by the Swin transformer with powerful global modeling capabilities, we propose a novel semantic segmentation framework for RS images called ST-U-shaped network (UNet), which embeds the Swin transformer into the classical CNN-based UNet. ST-UNet constitutes a novel dual encoder structure of the Swin transformer and CNN in parallel. First, we propose a spatial interaction module (SIM), which encodes spatial information in the Swin transformer block by establishing pixel-level correlation to enhance the feature representation ability of occluded objects. Second, we construct a feature compression module (FCM) to reduce the loss of detailed information and condense more small-scale features in patch token downsampling of the Swin transformer, which improves the segmentation accuracy of small-scale ground objects. Finally, as a bridge between dual encoders, a relational aggregation module (RAM) is designed to integrate global dependencies from the Swin transformer into the features from CNN hierarchically. Our ST-UNet brings significant improvement on the ISPRS-Vaihingen and Potsdam datasets, respectively. The code will be available at https://github.com/XinnHe/ST-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玉绳十六完成签到,获得积分10
1秒前
雨落尘飞发布了新的文献求助10
1秒前
qing完成签到,获得积分10
1秒前
1秒前
1秒前
QDU应助小牛牛采纳,获得10
2秒前
E10100完成签到,获得积分10
2秒前
骨关节炎完成签到 ,获得积分10
2秒前
JamesPei应助meng采纳,获得10
2秒前
Reine发布了新的文献求助10
2秒前
霸气的太清完成签到,获得积分20
2秒前
oreki发布了新的文献求助10
3秒前
上官若男应助悦耳的谷雪采纳,获得10
3秒前
拼搏的明轩完成签到,获得积分10
3秒前
宇宙法完成签到,获得积分10
4秒前
魔法世界完成签到,获得积分20
4秒前
李佳烨发布了新的文献求助10
4秒前
4秒前
arizaki7发布了新的文献求助10
4秒前
4秒前
我裂开了发布了新的文献求助10
4秒前
Komorebi完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
快乐保温杯完成签到,获得积分10
6秒前
7秒前
badercao完成签到,获得积分10
7秒前
FashionBoy应助chenchao采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
Simon_Zhang发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
张张张发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260929
求助须知:如何正确求助?哪些是违规求助? 4422163
关于积分的说明 13765353
捐赠科研通 4296568
什么是DOI,文献DOI怎么找? 2357408
邀请新用户注册赠送积分活动 1353709
关于科研通互助平台的介绍 1314957