清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimization and design of machine learning computational technique for prediction of physical separation process

吸附 化学 机器学习 过程(计算) 梯度升压 Boosting(机器学习) 人工智能 随机森林 决策树 支持向量机 工艺优化 计算机科学 工程类 化学工程 有机化学 操作系统
作者
Haiqing Li,Chairun Nasirin,Azher M. Abed,Dmitry Olegovich Bokov,Lakshmi Thangavelu,Haydar Abdulameer Marhoon,Md Lutfor Rahman
出处
期刊:Arabian Journal of Chemistry [Elsevier]
卷期号:15 (4): 103680-103680 被引量:17
标识
DOI:10.1016/j.arabjc.2021.103680
摘要

Machine learning (ML) methods were developed and optimized for description and understanding a physical separation process. Indeed, this work indicates application of machine learning technique for a real physical system and optimization of process parameters to achieve the target. A bunch of datasets were extracted from resources for physical adsorption process in removal of impurities from water as a case study to test the developed machine learning model. The case study process is adsorption process which has extensive application in science and engineering. The machine learning (ML) method was developed, and the parameters were optimized in order to get the best simulation’s performance for adsorption process. The data are used to correlate the adsorption capacity of the material to the adsorption parameters including dosage and solution pH. Randomized training and validation were performed to predict the process’s output, and great agreement was obtained between the predicted values and the observed values with R2 values greater than 0.9 for all cases of training and validation at the optimum conditions. Three different machine learning techniques including Random Forest (RF), Extra Tree (ET), and Gradient Boosting (GB) were employed for the adsorption data. Quantitatively, R2 scores of 0.958, 0.998, and 0.999 were obtained for RF, GB, and ET, respectively. It was indicated that GB and ET models performed almost the same and better than RF in prediction of adsorption data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木子发布了新的文献求助10
刚刚
小刘同学发布了新的文献求助10
2秒前
小张发布了新的文献求助10
6秒前
科研通AI2S应助木子采纳,获得10
6秒前
16秒前
微卫星不稳定完成签到 ,获得积分0
16秒前
Yini应助小张采纳,获得30
22秒前
调皮醉波完成签到 ,获得积分10
55秒前
1分钟前
jasonwee发布了新的文献求助10
1分钟前
李健的粉丝团团长应助Lolo采纳,获得30
1分钟前
科研通AI6应助jyy采纳,获得10
1分钟前
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
在水一方应助杰帅采纳,获得10
3分钟前
laohei94_6完成签到 ,获得积分10
3分钟前
小刘同学完成签到,获得积分20
3分钟前
老石完成签到 ,获得积分10
3分钟前
arizaki7应助小刘同学采纳,获得10
3分钟前
顾矜应助思辰。采纳,获得20
4分钟前
xiaowangwang完成签到 ,获得积分10
4分钟前
llll完成签到 ,获得积分0
4分钟前
13221应助小刘同学采纳,获得10
4分钟前
4分钟前
李东东完成签到 ,获得积分10
4分钟前
杰帅发布了新的文献求助10
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
郑阔发布了新的文献求助10
4分钟前
菜鸟学习完成签到 ,获得积分10
5分钟前
CodeCraft应助杰帅采纳,获得10
5分钟前
Jasperlee完成签到 ,获得积分10
5分钟前
鲤鱼山人完成签到 ,获得积分10
5分钟前
Skuld发布了新的文献求助50
5分钟前
orixero应助郑阔采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549496
求助须知:如何正确求助?哪些是违规求助? 4634723
关于积分的说明 14635076
捐赠科研通 4576249
什么是DOI,文献DOI怎么找? 2509609
邀请新用户注册赠送积分活动 1485432
关于科研通互助平台的介绍 1456715